
Stressing Out: Bitcoin “Stress Testing”

Khaled Baqer1, Danny Yuxing Huang2, Damon McCoy3, and Nicholas Weaver4

1 Computer Laboratory, University of Cambridge
2 University of California, San Diego

3 New York University
4 International Computer Science Institute

Abstract. In this paper, we present an empirical study of a recent spam
campaign (a “stress test”) that resulted in a DoS attack on Bitcoin. The
goal of our investigation being to understand the methods spammers
used and impact on Bitcoin users. To this end, we used a clustering
based method to detect spam transactions. We then validate the cluster-
ing results and generate a conservative estimate that 385,256 (23.41%)
out of 1,645,667 total transactions were spam during the 10 day period
at the peak of the campaign. We show the impact of increasing non-
spam transaction fees from 45 to 68 Satoshis/byte (from $0.11 to $0.17
USD per kilobyte of transaction) on average, and increasing delays in
processing non-spam transactions from 0.33 to 2.67 hours on average, as
well as estimate the cost of this spam attack at 201 BTC (or $49,000
USD). We conclude by pointing out changes that could be made to Bit-
coin transaction fees that would mitigate some of the spam techniques
used to effectively DoS Bitcoin.

1 Introduction

The Bitcoin network [9] was subjected to a major spam campaign during the
summer of 2015 that caused degraded performance of Bitcoin. The likely intent
of the incident (advertised as a “stress test”) was to Denial of Service (DoS)
Bitcoin with spam transactions, in order to expose the vulnerability of Bitcoin
to spam attacks and to garner support for a proposed change to increase the
number of transactions that the Bitcoin network can verify, which is currently
approximately 3 transactions per second. DoS attacks against Bitcoin have been
theorized. However, to date there has been little empirical analysis of DoS attacks
launched directly against Bitcoin.

In this paper, we conduct an empirical analysis of this spam based DoS attack
launched against Bitcoin. To enable our analysis, we use k-means clustering and
a set of features we identified to differentiate spam from non-spam transactions.
We validate the results of our clustering technique and are able to identify that
385,256 (23.41%) out of 1,645,667 total transactions were spam between July
7th and July 17th, which corresponds to the peak of the spam based DoS attack.
Further analysis of transactions in these clusters allowed us to identify four
distinct motifs of spam transactions. Based on our identification of spam and



non-spam transactions we are able to measure the cost of this spam campaign
and impact on non-spam transactions in terms of delay and increased fees.

Our study makes several contributions, including proposing and empirically
validating a method to identify spam transactions, characterizing the spam trans-
actions, and measuring the impact of this spam campaign on Bitcoin. Finally, in
our discussion section we propose changes to transaction fees that would miti-
gate the effectiveness of DoS attacks that use spam motifs similar to those used
in this attack.

2 Background

Bitcoin transactions are chained signed receipts, consisting of one or more signed
inputs to spend, and one or more outputs. The outputs of the transaction are
normally assigned to Bitcoin addresses; the hash of a public key that has the
authority to use the particular output as an input to another transaction. Trans-
actions are included in blocks, with each block also including the hash of the
previous block to create a blockchain. A block results from verifying all included
transactions, with a hash of the data creating a digest with a network-determined
prefix of zeros. The latter constitutes the difficulty of the network which is au-
tomatically tuned to ensure that the network expects that each block takes 10
minutes to create, and the effort exerted to create the correct digests is Bitcoin’s
Proof-of-Work (PoW). The blockchain represents Bitcoin’s global ledger, and
miners compete to create blocks and broadcast them to the network to claim
their rewards. Currently the network only creates and accepts blocks of 1 MB
or less, limiting global transaction rate to less than 3 transactions per second.

The main components of a transaction, relevant to our analysis, are the trans-
action ID (txid), the inputs to the transaction (vin), and the outputs (vout). A
transaction includes inputs that reference outputs of one or more older transac-
tions. That is, each input includes, inter alia, a reference to an older transaction
and the index in the list of outputs (of the referenced transactions) to be used.
Bitcoin transactions vary in their inputs and outputs, which determine the size
of a transaction.

Transactions are broadcasted to other peers in the Bitcoin P2P network,
who perform local verifications to prevent DoS attacks, and the transaction
propagates the entire network within a few seconds [3]. Received transactions
are maintained in a node’s own local memory pool (Mempool). Here, transactions
remain in limbo until confirmed and included in a block; once a transaction is
included in a block, a node removes the transaction from its Mempool. Although
a node tends to maintain unconfirmed transactions for a very long period of time,
memory pressure may cause a node to evict old entries from the Mempool if it
grows sufficiently large.

Nodes also maintain an unspent transaction output set (UTXO) to easily
verify inputs to newly received transactions. Therefore, an increase in the UTXO
adds memory pressure on nodes which currently hold the UTXO set in RAM.



Unlike the Mempool, memory pressure on the UTXO set cannot be relieved by
eviction, but requires changing the node’s implementation.

In the reference implementation, a Bitcoin miner calculates a priority and
uses this to determine which transactions to include in the block. To calculate
transaction priority (P ), the node considers all inputs to the transaction as
well as its size. P is defined in Bitcoin as

∑n
i=0(valuei × agei) ÷ S, where n

is the number of inputs to the transaction, value is the value of input i (in
Satoshis1), age is defined as the difference between the current block’s height
and the input’s block height, and S is the transaction’s size. The value of P
determines a transaction’s fate; there are three possibilities:

1. Include transactions in the high-priority section of a block (50 KB); no trans-
action fee is necessary. The following conditions must be satisfied, the trans-
action must be:
– smaller than 1 KB
– all output values are at least 0.01 BTC
– P is high as determined by valuei and agei

2. Transactions that pay fees are prioritized by highest mBTC per KB.
3. The remaining transactions are maintained in the Mempool until one of the

two conditions above is satisfied.

In the latter case, age is the determining factor for P since everything else is
constant. It’s of particular note that miners prioritize for higher fees.

2.1 DoS Targets inherent in Bitcoin

Spam can be detrimental to the Bitcoin network by outcompeting legitimate
transactions for inclusion in a block, delaying other transactions. We define the
following types of spam:

1. Fan-out: Transactions that split a few inputs into many outputs occupy
space in the blocks and also increase the UTXO set.

2. Fan-in: Transactions which absorb a large number of inputs reduce the
UTXO set but still occupy substantial space in the blocks.

3. Dust output: Transactions that create very small “dust” outputs convey a
trivially small amount of value but occupy the same amount of resources in
the Bitcoin network.

The spam campaigns in the “stress test” target one or more aspects of the
Bitcoin environment, including the block size limit, the UTXO set, and the com-
putational cost for verification. All these limited resources represent potential
targets.

The primary publicly stated motivation behind the stress test campaign was
to provide a justification for raising the Bitcoin block size limit before organic

1 1 Satoshi = 10−8 bitcoins. We follow the convention of referring to the protocol as
Bitcoin, the currency and its units as bitcoin or BTC.



demand limits the ability of Bitcoin to process payments. The current Bitcoin
block size of 1 MB globally supports less than 3 Bitcoin transactions per sec-
ond. Since this is three orders of magnitude lower than Visa’s sustained rate of
150M transactions per day (and peak processing ability of 24,000 transactions
per second) [10], it’s clear that the current Bitcoin payment processing is insuf-
ficient to meet the ambitions of the Bitcoin community. The public intent was
to demonstrate the impact of this limit by squeezing out normal transactions.

Raising the block size, however, opens up a different DoS vulnerability: a
long term growth DoS on the Blockchain itself. Since the Blockchain records all
previous transactions, an attacker could perform low fee transactions simply to
consume space. Thus if Bitcoin raised the block limit to 20 MB, and an attacker
can cheaply consume 10 MB of data per block, this causes the Blockchain to
increase in size by half a terabyte a year.

Since valid transactions can only spend unspent outputs, most full Bitcoin
nodes keep the UTXO set in memory to speed transaction validation. The mem-
ory requirements for the UTXO set are solely based on the number of unspent
outputs, so the inclusion of dust outputs in the stress test adds memory pres-
sure to the UTXO set. A better designed Bitcoin node should not have this
vulnerability.

Another DoS attack occurred on October 7th and 8th, which also put a sig-
nificant amount of pressure on the Mempool memory, raising the Mempool to
nearly a GB, with a transaction backlog of nearly a week. Since there are a large
number of nodes running on Raspberry Pi and other constrained systems, this
large Mempool managed to crash over 10% of all Bitcoin nodes 2. Most of the
spam itself, however, was of low priority. Such spam does not put pressure on
block inclusion, but neither does it cost the spammer any bitcoins; transactions
that are never confirmed do not incur a cost for the sender.

An inadvertent CPU DoS occurred due to a mining-pool’s “cleanup” block,
a single 1 MB transaction that served to remove a massive number of unspent
transactions sent to crackable “Brain wallet” addresses (which use a passphrase,
instead of private keys, to create Bitcoin addresses and spend bitcoins). Other
nodes required substantial CPU time to validate this block, as the current im-
plementation required O(n2) time to validate a transaction. There may be other
CPU DoS possibilities inherent in the Bitcoin protocol that attackers can exploit.

Another DoS is inherent in “transaction malleability”. Someone can take a
valid transaction, permute it so it has a different txid, and broadcast that mod-
ified transaction to the network. If the attacker’s transaction is accepted into
the blockchain, this can disrupt wallet services, hardware wallets, and other sys-
tems tracking txids to determine when a transaction commits to the blockchain.
Recently, an attacker performed this DoS “because I am able to do it.” 3

Finally, a later (failed) spam campaign attempted to flood the network with
invalid transactions, perhaps intending either a traffic DoS or a CPU DoS. The

2 https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_

1000_nodes_are_now_down
3 https://bitcointalk.org/index.php?topic=1198032.msg12579271

https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down
https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down
https://bitcointalk.org/index.php?topic=1198032.msg12579271


“money drop”, a public release of private keys by one of the purported instiga-
tors of the stress test, seems intended to cause a big race which would cause a
large number of “double-spend” transactions. This did not produce a meaning-
ful disruption of the network, although it was probably intended to introduce
computational load.

One aspect not encountered during the stress test was the effect of filtering
valid but spammy transactions. The introduction of spam filters, if an unknown
attacker continued a longer term DoS attempt, could in itself be a DoS. If the
attacker adapts to the filters, eventually the filters will either fail to stop the spam
or incur false positives. Even a small false positive rate might be disruptive: could
a payment network tolerate a 1-2% transaction failure rate due to spam filters?

3 Data collection

In our study, we set up a server connected to a public-facing network. We in-
stalled Bitcoin Core 0.11 and kept it running between June 19 and September
23, 2015. We collected three main data sets using Bitcoin daemon’s JSON-RPC
interface.

1. Bitcoin Blockchain: On September 23, we downloaded the entire blockchain
using the getblock and getrawtransaction methods. This returned de-
tails for all blocks and transactions, such as the timestamps of blocks, the
timestamps at which we received the transactions, the number of transaction
inputs and outputs, as well as the input and output amount. We stored the
data as plain-text JSON strings. As a result, the total data size is 350 GB.

2. Mempool: Between June 19 and September 23, the getrawMempool method
was invoked every minute. This returned a list of unconfirmed txids currently
in the Mempool. These would be either committed to the blockchain or later
discarded by the P2P network. We saved this list of txids, along with the
timestamp of the RPC call, on the Hadoop file system. During this period,
we captured 12 million distinct txids in the Mempool, which amounts to 250
GB of plain-text data.

3. Unconfirmed transactions: For every unconfirmed transaction that we had
obtained above, we immediately looked up the transaction details using the
getrawtransaction method, since the Mempool could discard the transac-
tion any moment. To optimize for speed and storage, we ignored transactions
that we had previously seen. Finally, we saved all the transaction details,
along with the data collection timestamp, on Hadoop. Between June 19 and
September 23, we captured 1.3 TB of unconfirmed transactions in plain text.

The total size of the data collected is 2 TB, which we saved as plain-text
JSON strings on the Hadoop file system and analyzed with Spark. We summarize
our data sets in Table 1.

As we collected data using only a single node, our perspective of the P2P
network—and thus the transactions in the Mempool—is potentially biased. In
particular, network propagation takes time. For transactions in the Mempool,



Table 1. Data sets. All data sets cover a period between June 19 and September 23.

Data Period Size

Blockchain Between Jan 9, 2009 and Sept 23, 2015 350 GB
Memory pool Between June 19 and Sept 23, 2015 250 GB
Unconfirmed transactions Between June 19 and Sept 23, 2015 1.3 TB

the timestamps that we observed may be later than the originating timestamps.
Furthermore, whether a transaction is relayed is up to individual nodes. A trans-
action created a few hops away is not guaranteed to reach our node. It is, how-
ever, beyond the scope of this paper to adjust for such biases. We assume that
our observation of the network is largely consistent with the rest of the network.

4 Spam clustering

We use an unsupervised machine learning method, k-means clustering, to find
similarities and evaluate our findings. This is not necessarily a perfect filter, but
as we manually verify, this does efficiently detect the spam transactions in the
“stress test”.

To use k -means clustering, we create a multi-dimensional vector representing
features of a Bitcoin transaction. We include in Table 2 the list of features and
follow up with defining features that were not previously discussed.

Table 2. Transaction features

Feature Notation Description

Inputs I Number of inputs
Outputs O Number of outputs
Ratio R I ÷ O
Priority P Value-weighted measurement
Size S Size (bytes)
Size and Ratio S × R Emphasize fan-in and fan-out
Fees F Value of unclaimed outputs
Coin days destroyed CDD Coin age and spending velocity
Value V Total output value
Fees to values ratio F ÷ V Emphasize fee differences

R is necessary to highlight the difference between fan-in and fan-out transactions.
We further highlight this difference by multiplying the size of the transaction
by its ratio (otherwise, transactions with clear differences in R are clustered
together based on similarities in S). We include another property to highlight
the velocity of spending bitcoins represented as CDD4. This feature gives more

4 This feature is used by Bitcoin block explorers, see for example: https://blockr.io

https://blockr.io


weight to older coins, and can be calculated as
∑n
i=0(valuei × agei). Unlike P ,

CDD does not consider S, age is measured in number of days rather than blocks
(an estimate of 144 blocks are produced each day), and value is in bitcoins.

4.1 Methodology

Since spam campaigns may not link transactions and addresses together, parsing
the blockchain to look for linked transactions might be a futile process. Our
approach is different: we cluster transactions based on their motifs (trends in
the Bitcoin network), and disregard transactions’ identifying information (output
addresses, txid, etc.). Our main assumptions at this stage echo those required for
machine learning algorithms: a pattern exists, we cannot mathematically point
out differences in patterns (without data visibility), and we have a large trove
of data to show the patterns exist. We assume motifs do exist because spam
requires construction in-bulk to have a measurable effect on the network. Thus
spammers naturally create large numbers of transactions that “look similar”. We
also expect that such groups of transactions may have different motifs compared
with normal Bitcoin behavior, since spammers want to minimize the cost and
maximize the impact, producing different types of transactions (e.g. very high
fan-out or dust output) that particularly stress the network.

What we seek is a high-level interpretation of the data into distinct clusters
that we can then use to label transactions as spam and validate our results. Thus,
to investigate our main goal of identifying spam motifs, we consider the entire
Bitcoin network as an entity, rather than analyzing features of a transaction
independently from network norms. The latter process relies heavily on what
features should be considered to identify spam, which might assign more weight
to some features while disregarding others that are more influential.

We use k -means clustering, as provided in Spark’s machine learning library
(MLlib). k -means clustering is a type of machine learning algorithm for unsu-
pervised learning. This algorithm is particularly useful to cluster similar data
together when it is non-trivial to define similarity using the unlabeled data. Sim-
ilarity of vectorized data is determined using k -means by minimizing the Within-
Cluster Sum of Squares (WCSS); the data is matched to the cluster centroid with
the closest mean. The following equation is used to iterate over the data to get
optimal cluster centroids in order to minimize WCSS:min

∑k
i=1

∑n
x∈Si

‖x−µi‖2,
where k is the number of clusters, x is the data element (in vector form), Si is
the set containing n elements, and µi is the mean of Si (i.e. the mean of all the
elements in vector form that are contained in Si).

To reproduce the results discussed in this paper, the following properties
of k-means must be considered: the number of clusters k was set to 10, the
number of maxIterations was set to 100, and initializationMode was set
to random. The silhouette coefficient measures the homogeneity of the data in
a cluster. This is performed by measuring the average dissimilarity (defined in
terms of distance between data elements) between a given element within its
cluster, and comparing the result with the average dissimilarity between that



same element and elements of another cluster considered to be the next best-
fit. However, in our case, our aim is to show general transaction motifs, rather
than to show detailed transaction differences or find anomalies. We arrive at
k = 10 after testing multiple values for k to show enough visibility of transaction
patterns. If we choose k = 11 for example, we obtain a new cluster where the
average of transaction outputs is 8 rather than 11 (as shown in cluster 9 in Table
3). Instead, we accept that the clustering algorithm groups these transactions
together in cluster 9, given that they are similar in other features. Conversely,
with k < 10, clusters contain transactions that differ in most of their features;
this does not enable us to inspect the clusters to easily determine which of
them fit our definitions of spam. With k = 10, we see the “outliers” visible in a
dedicated cluster (cluster 8 in Table 3), whereas with k < 10 these outliers are
included in other clusters that do not match well.

The initial step for processing data was weeding out some transactions that
alter the clustering results. To set a starting point, we create two checks to filter
transactions. First, we check if the transaction creates dust output (we explain
this check in details later). The second check determines if the transaction’s
fan-out ratio is unusual (a threshold is set at 0.3). The rationale for these two
checks is as follows: If a fan-in transaction creates dust output, then it qualifies
as spam, otherwise it is minimizing the set of UTXOs that must be maintained
to verify transactions. Moreover, if a fan-out is unusual, this is enough to qualify
a transaction for clustering, and we later determine if the transaction is spam
by inspecting clustering results, and checking for dust outputs in clusters that
seem to contain normal transactions.

We analyze confirmed transactions that occurred between June 24th and
July 17th, 2015. The total number of transactions in this epoch is 3,321,429. To
obtain k-means clusters, we perform k-means training on all transactions that
were confirmed during the July spam campaign epoch, that occurred between
July 7th and 17th, the total number of transactions in this training epoch is
1,645,667. Using the cluster centroids from the spam epoch, we analyze the pre-
spam epoch to validate our results.

4.2 Results and motifs

We now discuss motifs found in more than 1.6M transactions that occurred dur-
ing the spam epoch. Table 3 shows each cluster centroid’s features. As discussed
earlier, these centroids are the result of optimizing WCSS, and are represented
as the means of the values of all transactions in the corresponding cluster. Table
4 shows the standard deviation of the cluster centroids5.

1. Fan-in. Clusters 2 and 4 include about 14K fan-in transactions. The
pattern is distinct: large I and one O (in rare cases O is for two addresses).

5 The notation used in the tables corresponds to the notation used for the transac-
tion features defined earlier. Note that both tables include rounded values, while
attempting to maintain distinctions for small values with the minimum amount of
rounding necessary. For better presentation, we omit some features.



Table 3. Cluster centroids (confirmed transactions)

C TXs I O R P S F CDD V

0 48K 1.35 46 0.06 0.74 1.8K 0.0004 0.195 4.06
1 28 4.4K 1 4.4K 0.001 645K 0.04 0.06 0.0
2 896 106 1 103 0.17 16K 0.001 0.34 0.13
3 20 1.1K 1 1.1K 0.0008 162K 0.01 0.012 0.0
4 13.5K 31 1 31 0.04 4.7K 0.0002 0.02 0.006
5 16 1.4 13 0.15 535K 668 0.0004 25K 1K
6 9.5K 20 17 19 0.4 3.5K 0.0004 0.14 1.4
7 425K 1.1 2 0.8 1 224 0.0001 0.022 1.43
8 2 1 19 0.05 136M 787 0.0002 740K 3K
9 117K 1.2 11 0.14 72.43 561 0.0002 2.7 6.5

Table 4. Standard deviation of selected features (confirmed transactions)

C I O R P S F CDD V

0 4 104 0.77 27 3.6 0.002 17 40
1 1.2K 0 1.2K 0 176 0.012 0.05 0
2 43 0.2 35 2 6 0.0005 4 1.8
3 403 0 403 0 60 0.004 0.02 0
4 8 0.1 8 0.8 1.2 0.0002 0.5 0.24
5 1 7 0.1 0.35M 0.38 0.0001 26K 1.2K
6 2 0.4 2 1.65 0.35 0.0002 0.5 4
7 0.4 0.9 0.4 9 0.1 0.0002 0.2 15
8 0.0 0.5 0 3M 0.02 0 0.2M 748
9 0.5 6 0.2 2K 0.2 0.9µ 177 70

The transactions vary in S due to variations in I, and a notable distinction
is in CDD. Cluster 2 includes larger values for CDD, which indicates that the
inputs are not used for rapid transfer of value. Moreover, these transactions
may not have been used as spam per se, but are rather part of tumblers
or mixers where a large number of inputs are collated into single outputs
and the chain continues, in order to mix coins together and obtain relatively
better privacy. These transactions involve long chains of many inputs to a
single address, the last address then transfers funds to multiple outputs in
fan-out transactions, and so on. A large number of fan-in transactions impact
the Mempool, but minimize the UTXO set.

2. Fan-out. The fan-out pattern involves one or two addresses sending funds
to many addresses, as shown in Clusters 0, 5, 8 and 9; the total number of
transactions in these clusters is about 165K. These transactions increase the
UTXO set. This pattern was dominant in the clustering results; it resulted in
multiple clusters for fan-out transactions that differ in features other than R.
A low value for CDD indicates a fast movement of coins. Note that Cluster
0 includes transactions that have a single address sending small amounts to
more than 3K addresses.

3. Unable-to-decode. With 425K transactions, Cluster 7 includes the largest
number of transactions. The distinct feature of most of these transactions is
a one-to-one mapping: one address sending to a single output that cannot be
decoded. Moreover, the fees paid for these transactions (which are collected
by miners since the output cannot be decoded) equal the default fee value



of 0.1 mBTC per KB. Another feature of this cluster is the zero value for
CDD (and low P ), which indicates rapid movement of bitcoins.

4. Dust. The final motif of the analyzed spam campaign is the dust transac-
tions we had previously discussed. Cluster 7 contains non-spam transac-
tions; normal transactions are matched to this cluster since they look simi-
lar to unable-to-decode transactions (low values for most features). It is not
straightforward to visually inspect the cluster samples and determine if they
are indeed spam. Therefore, we parse the transactions in this cluster to de-
termine which of them fit our definition of dust spam. We explain in a later
section how we parse the results to find dust spam transactions.

5. UTXO cleanup. Clusters 1 and 3 include ‘clean-up’ transactions, cre-
ated by miners to collate spam transactions to minimize the UTXO, thereby
decreasing the spam impact on the network. The output addresses value of
these transactions may be zero, meaning that all the inputs are collected as
fees by the miner who includes the transaction in a block. Clean-up transac-
tions include ‘Brain wallet’ addresses (discussed earlier). These two clusters
are not categorized as spam, and the transactions are a consequence of the
spam campaign. The number of inputs to these transactions range between
1K and 5K (resulting in a large standard deviation).

Note that clusters 5 and 8 contain few transactions due to their unusually
high P . Cluster 8, which contains only two transactions, is indeed interesting
and earns its unique cluster: along with high P , the values of these transactions
are around 2,500 and 3,995 bitcoins (that is almost $0.6M and $0.96M in USD
respectively). Both transactions include a generous fee of 0.002 BTC.

In summary Clusters 0, 2, 4, 6, 7, and 9 correspond to our definition of
Bitcoin spam, including dust transactions and unusual ratios, while clusters 1
and 3 are a consequence of spam and not spam motifs.

4.3 Validation

It is important to note that we lack an external source to create ground truth
for our results. Without a labeled data set, or a third-party spam list, we cannot
measure the clustering results to be spam more accurately than matching the
results to our definitions of spam.

In order to find dust transactions, we check if P is low (less than 57M) and
whether the transaction creates any outputs of 0.1 mBTC (about $0.02), which
is the default fee value. We consider this a conservative estimate of the dust
transactions involved in the spam campaign, and at the same time we consider
the 0.01 BTC normally involved in dust checks to be too large.

We also applied clustering to transactions that occurred in the pre-spam
epoch, between June 24th and July 7th (after filtering for dust and unusual
ratios). The results are discussed in the next section, where we see a difference
in the intensity of motifs before and during the spam epoch. This validates our
clustering results: we find that the centroids obtained from training k-means,
using the spam epoch data, can also detect spam patterns in non-spam epochs.



5 Impact on Bitcoin

We now describe the effects of spam campaigns on the Bitcoin network—especially
on users who send non-spam transactions, as well as the miners. For the users,
we measure the change in transaction fees and transaction delays (i.e. the time
between when we first observe a transaction in the Mempool and when the
transaction is committed to the blockchain). A large amount of spam is likely
to increase the backlog of unconfirmed transactions. As a result, transactions
are delayed for longer time periods. With more intense competition, senders pay
higher fees, in the hope that their transactions will be included in blocks sooner.
For the miners, we measure the corresponding increase in the block reward.
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Fig. 1. A stacked bar chart that shows the number of transactions
per day in the blockchain. Note that the spam period is from July 7th

to 17th.

Figure 1 shows the clustering results in the non-spam and spam epochs. Note
that in the pre-spam epoch (before July 7th), clustering results show Cluster
1 transactions (UTXO-cleanup motif). This does not mean that miners were
cleaning up spam; these transactions are similar to UTXO-cleanup transactions
in terms of high I and low O, and similar P values.

To highlight periods of the spam campaign, we measure the number of un-
confirmed transactions in the Mempool, which indicates the amount of backlog
in the network. Every minute, we take a snapshot of the Mempool and count
the number of unconfirmed transactions. We take the average on a daily basis
and plot the result in Figure 2.

Each major spike in the graph refers to a period of significant backlog. The
first spike, which happened between July 7th and 17th, corresponds to the spam
campaign in our study. There are sporadic spikes between July and August,
but we do not have sufficient insight on the cause. Finally, a spike appeared



around September 13, when an anonymous group conducted another stress-test
on the network with their “money drop” (as discussed earlier). As a result,
a large number of transactions were created to compete for the free bitcoins,
although only a few of them would be included in the blockchain eventually.
Such a deluge of transactions caused the second backlog in Figure 2. We do not,
however, consider these transactions as spam.
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every day.
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Focusing on the mid-July spam period, we next examine the number of
transactions that were committed to the blockchain. We are interested in how
each block allocates its scarce 1 MB of real-estate space to spammers and non-
spammers. As shown in Figure 3, the number of transactions surged during the
spam epoch. Between a quarter to half of the daily transactions have been iden-
tified as spam. As a baseline comparison, we also show that the number of spam
transactions before the spam period is significantly lower, with the exception of
June 30. Based on anecdotal evidence, some users were attempting to stress-test
the Bitcoin network on a small scale, which resulted in a brief rise in spam.6

For the non-spammers, the spam period was a time when both transaction
fees and delays were higher than normal. We show the comparison in Figures
4 and 5. On average, the delays in processing non-spam transactions increases
by 7 times, from 0.33 to 2.67 hours. Likewise, the average non-spam transaction
fees also surged, increasing from 45 to 68 Satoshis for every byte of transactions
(or from $0.11 to $0.17 USD per kilobyte of transactions)—an uptick of 51%.

While non-spammers suffered, miners slightly benefit from the fee hike. As
shown in Figure 3, miners were earning twice their normal fee-based revenue dur-
ing the mid-July spam period, as compared with the non-spam period. However,

6 http://motherboard.vice.com/read/wikileaks-is-now-a-target-in-the-

massive-spam-attack-on-bitcoin



even on days with maximum fees, the amount of extra mining income from fees
was less than 1% of the block reward (which is 25 BTC per block, and about
3,600 BTC per day). The total transaction fees that spam transactions paid
amounted to 201 BTC (or about $49,000 USD) over a 10 day time period—a
modest sum that caused a rather noticeable disruption to the network.
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Fig. 4. Average transaction delay be-
tween when a transaction appears in
the Mempool and when it is commit-
ted to the blockchain.
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are normalized against the size of each
transaction.

6 Discussion

The spam campaign happened when the Bitcoin network is divided regarding a
critical component of the protocol: the block size limit of 1 MB. The result was a
recent fork between two camps: some want to raise the limit while others refuse
to alter the rules set by Satoshi Nakamoto (Bitcoin’s creator). We can specu-
late that the spammer was motivated to launch a DoS attack to demonstrate
the fragility of Bitcoin’s resilience if the block size limit is not raised. This is
supported by an earlier spam campaign, where an online Bitcoin wallet service
claimed responsibility under the pretext of “stress testing”.

With regards to the methodology proposed in this paper, we do not suggest
that this model can be used to prevent Bitcoin spam completely, nor should it
be used as such. It was used to measure and analyze spam after the fact, without
the spammers being aware that they are being measured. Spammers can learn
from this paper what heuristics and features we used, to alter their motifs and
adapt accordingly.

Although we used dust checks to validate our results, this is not a fool-proof
measurement to accurately validate spam in Bitcoin. It is trivial to create a
transaction that does not generate any dust outputs. However, if a transaction
does not create dust, then the clustering algorithm matches that transaction to



a cluster that highlights other features, particularly differences in ratio. We use
dust validation when there is a possibility a cluster contains normal transactions.
Since we defined unusual fan-out ratios to constitute spam transactions (and they
are gathered in distinct clusters), along with our conservative measurement of
dust, we believe that the results we had shown earlier provide a good estimate
of the July spam campaign.

It is important to note that the July spam campaign on Bitcoin would be
infeasible on altcoins since some deploy a different model for transaction fees.
For example, Litecoin charges the mintxfee for each small output. Bitcoin can
adopt a similar model, or a dynamic model for fees, possibly using clustering
results to observe spam patterns, and change mintxfee accordingly.

7 Related Work

In their recent Bitcoin SoK paper [2], Bonneau et al. highlight open research
questions and discuss issues with Bitcoin regarding stability and scalability, rang-
ing from Bitcoin forks and network analysis to incentivizing correct behavior and
adding resilience with proposed changes. The authors highlight penny flooding,
as discussed in [8], which is related to our discussion of dust transactions. In
the Appendix of the extended version of their SoK paper, the authors discuss in
more details Bitcoin’s stability and transaction validity. The extended version
includes a discussion outlining options to overcome the drawbacks of maintaining
the entire UTXO to process new transactions: using a statefile, updated incre-
mentally with new data, it is possible to more efficiently retrieve transactions
for verification using a transaction’s hash in O(log M), where M is the number
of unspent transactions. It also possible to further minimize the data structure
required to validate transactions using hash-based authenticated data structures
as proposed in [5].

Becker et al. [1] discuss the possibility of denying service to the Bitcoin net-
work using a virtual protest: protestors join forces to collectively execute a DoS
attack by overwhelming the network and depleting precious block space (these
transactions are much larger than normal Bitcoin transactions). If a protest is
ongoing, this can frustrate non-protestors and decrease faith in the resilience
of Bitcoin to process transactions in a timely manner (Bitcoin’s main features
include processing payments in minutes, as well as low transaction fees). This
virtual protest attack was labeled ‘Occupy Bitcoin’ by Kroll et al. [4].

Our clustering approach is different than previous work aiming to find pat-
terns in Bitcoin: we strip away identifying information (such as txid, addresses,
etc.), and cluster transaction features in order to determine patterns, rather
than linking transactions together to de-anonymize users. For example, in [6],
researchers cluster transactions based on determining shared authority proper-
ties, while using similar transaction features used in this research.

Other empirical research determining detrimental affects on the Bitcoin net-
work measure the lifetime of Bitcoin exchanges [7], through analyzing daily
transaction volumes and how exchange breaches affect survival time. Running a



profitable exchange logically results in a more lucrative target, hence a breach
is more likely which leads to the eventual shutdown of an exchange. Another
approach is to parse online forums to obtain data indicators of possible attacks
on the network, as was done in [11].

8 Conclusion

We have presented an empirical study of a spam based “stress test” DoS at-
tack against Bitcoin. Using our clustering based approach we find that 385,256
(23.41%) out of 1,645,667 total Bitcoin transactions were spam during a 10 day
period at the peak of the spam campaign. We also show that this attack had
a negative impact on non-spam transactions, increasing average fees by 51%
(from 45 to 68 Satoshis/byte) and processing delay by 7 times (from 0.33 to 2.67
hours). This shows that an adversary who is willing to expand modest amounts
of bitcoin (at least $49,000 USD), to pay higher fees, can DoS Bitcoin. Follow up
DoS attacks against Bitcoin have used other methods, such as “money drops”,
and transaction malleability to degrade the operation of Bitcoin. We point out
that changes to Bitcoin’s minimum fees could mitigate some of the spam motifs
we witnessed. Our results show that exploration into Bitcoin transaction spam
filtering techniques, and other Bitcoin DoS mitigation approaches, merit further
investigation.
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