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Abstract. We present a new approach to cross channel fraud detection:
build graphs representing transactions from all channels and use analyt-
ics on features extracted from these graphs. Our underlying hypothesis
is community based fraud detection: an account (holder) performs nor-
mal or trusted transactions within a community that is “local” to the
account. We explore several notions of community based on graph prop-
erties. Our results show that properties such as shortest distance between
transaction endpoints, whether they are in the same strongly connected
component, whether the destination has high page rank, etc., provide
excellent discriminators of fraudulent and normal transactions whereas
traditional social network analysis yields poor results. Evaluation on a
large dataset from a European bank shows that such methods can sub-
stantially reduce false positives in traditional fraud scoring. We show that
classifiers built purely out of graph properties are very promising, with
high AUC, and can complement existing fraud detection approaches.

1 Introduction

Fraud in payment transactions is a large problem for consumers: card fraud alone
is estimated to result in losses of €1.33B in the EU in 2013 [7]. The reasons for
the continued prevalence of transactional fraud are varied: reliance on outdated
technologies (e.g., magnetic stripes), new banking models (e.g., online bank-
ing, P2P payments), man-in-the-browser malware, phishing, etc. Banks have
turned to preventive technologies, such as EMV (chip-and-pin/signature) for
card-present transactions. Mitigations for card-not-present transactions (e.g., on-
line) include: CVV2 numbers, multifactor transactional authentication numbers
(TANS), etc. Despite their partial success, fraud is still a big problem: Criminals
devise malware specifically crafted to a particular bank’s web pages and mobile
apps that modify transactions prior to any additional user authorizations. Pre-
ventive measures introduce friction by requiring additional equipment or steps
that customers need to perform. Thus, fraud detection algorithms and analytics
based on transactional information is a fundamental technique all banks rely on.
Most fraud detection solutions work on specific channels and use two key meth-
ods: rule based systems and statistical analytics. Rule based systems flag known



fraudulent patterns, e.g., multiple transactions at petrol stations in quick suc-
cession. Channel specific rules e.g., blacklisting malicious IPs or Tor exit nodes
or incorrect billing/shipping addresses are common. Statistical methods attempt
to build profiles of customers based on frequency and amount of normal transac-
tions, changes in geography, or merchant types. Real-world constraints require
fraud detection to finish in a few milliseconds, limiting the scope and sophisti-
cation of analytics, resulting in higher error rates, and even small false positive
rates can be extremely costly e.g., irate customers, investigation costs.

This paper describes a completely new approach to cross-channel fraud detec-
tion based on graph analytics. Our primary objective is reducing false positives of
current methods. Our hypothesis is that payment patterns define communities,
and fraud manifests as deviations from these communities. We discover commu-
nities by building transaction graphs irrespective of the channel, and analyzing
the structure of such graphs. These notions of community become stronger as
financial institutions open up new means for person-to-person payments, such as
popmoney and QuickPay. Our work is closely related to social network analysis
(SNA) that attempts to identify communities and relationships, like friendship
and followers. Our analysis shows that semantic differences between social and
financial anomalies limit applicability of existing SNA work to this domain.

This work represents the first step in evaluating graph-based anomaly detec-
tion for fraud detection: we seek to determine which graph features, if any, pro-
vide measurable benefit in identifying fraudulent transactions. Our experiments
with cross-channel transaction data from a European bank (ABN AMRO) show
that several graph features provide discrimination between fraudulent and be-
nign transactions. In a graph model where a node represents an account and an
edge is a completed transaction we show that the following features can be used
to substantially reduce false positives (upwards of 30%):

— the shortest distance between the endpoints of the target transaction

— if the endpoints are in the same strongly connected component

— the page rank of the destination and the reverse page rank of the source
which clusters (defined by different methods) do the endpoints belong to and
the likelihood of a transaction between these clusters.

These features, their variants and other path-based features provide excellent
discrimination. We find that SNA features, such as node properties and features
derived from the egonet of an account, do not perform well. Our solution is
orthogonal and complementary to existing techniques, and is not intended to
replace existing customer and channel profiling, but rather to improve accuracy
by reducing false positives. Scalability of graph algorithms are a major hurdle
in their adoption for real-time scoring (a cache miss takes around 100ns [24],
limiting processing to around 1000 vertices in 100ms): our features can be pre-
computed, accelerated using time-storage tradeoffs, approximations, and heuris-
tics to meet performance targets. Finally, we illustrate how to build classifiers,
based solely on graph features and independent of traditional statistical features
for fraud detection, and evaluate their performance on a small subset of the
transactional data showing excellent promise.



There are clear benefits to graph based methods: they are channel indepen-
dent and applicable to new channels, are more adaptive than rule based systems
and more expressive than statistical methods. They define fraud based directly
on the accounts involved in a transaction, not on indirect indicators e.g. statis-
tical measures (how much the account has spent in a day) or channel-specific
measures (indications of malware on the endpoint). Note that a transaction
where the destination account has been modified, just prior to user authoriza-
tion, cannot be detected by statistical source-account profiling. Our work is, to
our knowledge, the first to show a completely new scientific approach to fraud
detection in transaction networks that is channel independent. Our results are
highly promising with great false positive reduction, and through clever pre-
processing and algorithmic selection we can perform scoring in real-time on a
commodity x86 machine without specialized hardware.

2 Related Work

Fraud detection is a mature area with almost every bank and card issuer de-
ploying some solution using rules, analytics, and predictive models. They use
existing products (e.g., [10, 11, 22]), proprietary risk engines, or combinations
of these components. Both SAS and FICO Falcon rely on neural networks for
their scoring engine for speed and efficiency. Existing solutions focus on statis-
tical anomalies (min, max, average, etc.) on hand-picked features of accounts
to build customer profiles, such as recency, frequency, and monetary value of
transactions (RMF) [9] etc., and must be tuned for specific companies. Typi-
cally, “cross channel” means combining such properties from multiple channels
into one.

There are many works describing applications of machine learning to fraud
detection. Most work focuses on feature selection and building supervised classi-
fiers. Many products [10] and published works [3,5,18,26,27] use neural networks
to score transactions from statistical features. Other techniques include Bayesian
learning [18], decision trees [26], association rules [25], and genetic algorithms [8].

There is a large body of work on social network analysis [2,13,19], often fo-
cused on identifying anomalous nodes [2], fake accounts [12], or spam [14,17]. As
discussed in Section. 5.5 while these methods identify anomalous nodes they are
somewhat unconnected with fraud. One can view SNA as focused on identifying
anomalous/special nodes while fraud detection finds anomalous edges.

APATE [29] combines traditional features (RMF) with graph-based features
connecting credit cards and merchants through transactions. They use influence
propagation [17] to measure the propagation of fraud labels through the network.
Such analysis identifies “hot spots” where merchants have been compromised
and cards used in subsequent fraudulent transactions, such as CNP transactions
without a second factor for authorization, which ABN AMRO currently uses.



3 Problem Definition: Data sets and real-time constraints

This section briefly introduces the types of transactions used in the evaluation,
the types of fraud addressed, and domain specific constraints that need to be
considered. We provide some details on the private dataset used to evaluate our
methodology and the possible public datasources. Our test data comes from a
European bank that fully deployed EMV in both card-present and card-not-
present transactions using chipTANs (Chip Authentication Program). This is
very different from the fraud problem in the USA where cards mostly rely on
magnetic stripe for card-present transactions and CVV2 for card-not-present
transactions. While EMV has some security issues [4,20] both EMV and TANs
substantially reduce vectors for committing fraud and necessitates increasingly
sophisticated attacks. Known since 2005 is man-in-the-browser malware which
replaces destination account numbers with account numbers the adversary con-
trols, called a mule account. When the customer verifies the transaction, using
chipTAN or mTAN, they authorize illegitimate transactions. Mobile malware
can intercept mTANs, and customers may still fall victim to phishing attacks,
e.g. the Boleto scams in Brazil [23].

This work complements existing fraud monitoring solutions by analyzing the
utility in graph-based features that are orthogonal to traditional approaches.
There are several key requirements: First, it is desirable to be able to score
all transactions, and not simply subsample. Second, it is preferable to score
transactions in real-time and block fraudulent transactions. Some transactions
are non-reversible, such as wire transfers, saving both the customer and the bank
time and money if the transaction can be blocked rather than discovered through
forensics. Thus we expect our analytics to run in the order of milliseconds to
support the real-time blocking of suspected transactions.

3.1 Data Sets

The data set that we use is proprietary to ABN AMRO and combines incom-
ing and outgoing transactions from different channels: online banking, point of
sale, ATM , mobile banking, and person-to-person payments during the period
June 1, 2012 through Aug. 30, 2012. For this period we also had labels: false
positive (transactions flagged as fraudulent by the current system, later deter-
mined to be benign), transactions correctly flagged as fraudulent, and fraudulent
transactions not flagged. There were hundreds of millions of transactions in this
period. Other details of the data set including specific properties are described
with the results.

The only large public data set is the Bitcoin [21] blockchain, currently having
420 million transactions and about 85 million Bitcoin addresses which can be
seen as accounts. Unlike traditional banks, Bitcoin allows (and encourages) a
distinct account number for each transaction. We expect that account profiling
mechanisms to be unsuccessful on this data and use it only to test scalability of
our feature evaluation.



4 Graph Analytic Approach

This section outlines the graph analytic approach, the underlying motivation
and how we use transaction graphs to score fraud. We view financial transactions
transferring money from one account to another as (temporal) edges connecting
accounts. Using this we can build powerful analytics leveraging recent advances
in scalable analytics and anomaly detection in graphs. A successful payment can
be seen as establishing a trust relationship relying only on the entities in the
transaction and not on the channel or any other parameters. An account trusts
the accounts/entities that it pays directly the most. The “web of trust” model
can be used to transitively infer trust relationship—we then trust accounts that
are paid by the accounts we pay and so on—and these relationships naturally
define communities of normal transactions. If we can find graph features which
are indicative of fraud then this approach achieves two big goals:

— Establishes a channel independent mechanism of detecting fraud.
— Graph feature based fraud detection uses a completely new set of features
and would complement the accuracy of the traditional fraud detection.

4.1 Formal Definition

While banking systems record numerous attributes about transactions, we re-
strict ourselves to four attributes: source account, destination account, times-
tamp, and amount (in a common currency). From the many timestamps associ-
ated with a transaction (time initiated, processed, cleared, etc.), we assume there
is one authoritative timestamp which we use. Using this data, there are several
graph models one can define. First, we can model transactions as a quiver.

Definition 1. A quiver (or multidigraph) I' = (V, E,s,t) where V is a set of
vertices of I', E is a set of edges, and s and t are mappings s : E —V and t :
E — V that returns the source and destination vertices for an edge, respectively.

Each edge has two properties: the timestamp and the value of the transaction.
Alternatively, we can define a vertex type to represent transactions as follows:

Definition 2. A heterogeneous information network (HIN) is a digraph G =
(V,E,~,7) where v and T are functions mapping vertices and edges to types:
v:V = A, and 7 : E — R for vertex types A and edge types R.

We assume two vertex types: accounts and transactions. Only one edge type, pays
is necessary, however more expressive HINs are possible. Transaction vertices can
be annotated with the timestamp and amount. Collapsing multiple transactions
between the same endpoints into one representative transaction yields a digraph.

Definition 3. A digraph is a graph G = (V,E) where V is a set of vertices
(accounts), and E C V? is a set of edges (transactions). The edges may be
weighted (by the total value or the number of transactions etc.).

These representations can be enhanced by additional information such as account
owners, types (savings, chequing, credit card) etc. leading to enhanced insights.
We use the quiver representation but process digraphs for scalability.



(b) HIN (c) Digraph

Fig. 1: Transaction data with three different graph representations. In the HIN,
shaded triangles represent transaction vertices.

4.2 Graph Construction and Scoring

Figure 2(a) depicts the overall process of graph construction for fraud scoring.
Only transactions that occur strictly prior to the one being evaluated are used to
construct the graph (1). Given a transaction T = X - Y (from account X to Y
for amount v) to be scored, the accounts are identified in the graph (2). Features
from the graph are then extracted (3), and scored using a trained classifier (4).

The strategy to select past transactions to construct graphs has tradeoffs
in accuracy, speed of construction and maintenance, and scalability of graph
algorithms. We can score a transaction against many different graphs taken from
(possibly overlapping) time windows as shown in Figure 2(b). Some choices for
defining such a prior window for a transaction occurring at time t are: a fixed
number of recent transactions (e.g., one million); real-time scoring with a time
window of size 4, i.e., [t — §,t); or rounding time to a unit of granularity n, such
as one day, i.e, [n* (L%J — z) , T % (L%J —j)], where ¢ > j > 1, which we call
discrete time. This work uses discrete time with a granularity of one week, and
score transactions against one, two, four, and ten week windows.

Given a graph G, we extract two basic types of features: features about the
vertices, Fg(X), such as the page rank or size of the egonet; and features about
the pair of vertices, Fg(X,Y), such as the shortest distance from X to Y. We
assume any feature extractor I’ returns a special value | when the input account,
or either account for the pair, is not in the graph G, and we can assign a prior
fraudulent probability derived from all transactions not seen in a graph.

We can define ensemble scoring variants with this framework using multiple
features from the same graph or features from multiple graphs. The classifier we
construct for evaluation uses three different features from the same graph for
scoring. Standard machine learning techniques on feature selection and training
can be used given features from multiple graphs and labelled transactions.

4.3 Community based fraud detection

Our notion of fraud detection is based on notions of community: any transactions
done outside a normal community are considered suspicious. We explore various
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(a) Graphs of past transactions. (b) Discrete time windows.

Fig. 2: How individual transactions relate to graphs to be scored.

notions of community in Section 5 such as: trusted accounts within a small
degree of separation (shortest-path metric in Section 5.1), accounts which have
a bidirectional flow of money (strongly connected components in Section 5.2),
accounts which are “reputed” (PageRank in Section 5.3), and accounts belonging
to the same cluster (Section 5.4). Some natural notions of community such as
accounts to which there is a sufficient flow of money (maximum-flow) are not
feasible to compute in real-time. A longer version of the paper will discuss related
notions e.g. connectivity, centrality, clustering, link prediction, etc.

5 Binary features for fraud detection

This section provides results of the experiments on the transaction data. We dis-
cuss the analytics evaluated, details of the evaluation, observations and finally, if
the feature can distinguish between classes of transactions: random benign, false
positives (generated by the current system), and fraud. The transaction data
and labels used were extracted from 2 June 2012 to September 2012. From this
we construct graph models over different windows of time and use these to score
subsequent transactions. We experimented with different window sizes to deter-
mine the appropriate size: choosing a small window can cause instability in the
graph features while choosing a large windows results in graphs computationally
expensive graphs without recency. We constructed graphs from the transaction
data of lengths 1-4 weeks. Before we discuss the specific features and how we will
evaluate their utility, we must consider how the features may be used in practice.
There are several ways in which graph features can be integrated into existing
fraud detection and management system depending on the particular use case
or type of fraud. For example, if false positive reduction is the primary goal then
only transactions the existing fraud detection system flags need to be scored.
Specifically, when the existing fraud detection system flags a transaction as po-
tentially fraudulent, graph features are extracted and scored. If the graph-based
analytics indicate the transaction is not fraud, then it may be dropped without
further processing. The reduction in false positives can either yield significant
savings for the bank (e.g., fewer incidents to investigate). Alternatively, the sav-
ings can be spent in other ways. For example, investigating the same number



of transactions, decreasing the false negatives and catching more fraud, or by
decreasing customer friction by increasing the allowed risks. In other use cases,
transactions can also be scored using graph-based features (see Section 7). This
can be performed independently (as we demonstrate), or in combination with
existing analytics and channel-specific features, such as geolocation, transaction
amount, and other channel specific features.

Our experiments are designed to evaluate two of these use cases. First, we
evaluate how well they reduce false positives produced by existing analytics. We
also indicate how well the individual features perform at identifying fraudulent
transactions if they were to be used alone (note that typical fraud detection sys-
tems score using tens-to-hundreds of features). Finally, we will build a classifier
using several features and score held-out transactions.

5.1 Shortest Path

This analytic is easiest to understand: Viewing a transaction as a trust relation-
ship, a path between two accounts is a series of trust relationships. The central
hypothesis we investigate is: trust in financial networks is transitive i.e. if ac-
count x pays y and y pays z then can we view this a trust relationship between
x and z. This model is especially relevant for person-to-person payments. We
test whether this transitive notion of trust can be used to identify fraudulent
transactions. Specifically, we measure the length of the shortest chain of trans-
actions between the source and destination accounts and evaluate its ability to
discriminate between normal and fraudulent transaction. In effect the analytic
is the existence of a short path is indicative of a non-fraudulent transaction.
For directed transaction graphs, where each edge has a weight (value), there
are two possible notions of closeness: shortest path and shortest distance. Short-
est path treats all edges equally, and counts the length of the path that connect
two accounts. Shortest distance could weight this path with the transaction
value or any other metric. For any pair of transactions, we compute three short-
est paths: the direct shortest path from the source account to the destination;
the reverse directed shortest path, i.e., the path from the destination account to
the source and the undirected shortest path. An undirected shortest path may
exist even if there are no paths from the source to the destination or vice-versa.

Experimental Results We evaluate shortest path metrics using a graph built
from four weeks of transactions and scoring transactions in the subsequent week
with it. The null hypothesis is: the shortest path feature does not statistically
distinguish normal from fraudulent transactions. Over all periods, the null hy-
pothesis is rejected: the distribution of shortest paths for fraudulent transactions
compared to that of a sample of normal transactions differs significantly (x? for
p << 0.05). For each shortest path variant, we evaluate the intrinsic value of
a one-dimensional binary classifier at distinguishing between normal and fraud-
ulent transactions, producing a receiver operating characteristic (ROC) curve
illustrating the false positive and false negative tradeoffs. Figure 3 shows the
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Fig. 3: Distribution of shortest path for transactions during 2012-06-29 through
2012-07-05 in graph constructed from the previous four weeks of transactions.

distribution of the shortest path (in the graph constructed from the prior 4
weeks) for transactions in the period of 2012-06-29 through 2012-07-05. The
histograms are scaled for the different populations. Normal and false positive
transactions show a clearly distinct statistical distribution compared to fraudu-
lent transactions. In this case, the shortest path binary feature is able to reduce
false positive rates by 63%)!

The results for the reverse shortest path, a closeness measure for “repay-
ment”, is shown in Figure 3. Reverse shortest path is the poorest performing of
the three illustrative measures, but still yields an almost 14% reduction in false
positives. Other time periods yielded equally impressive, or better, reductions
for shortest path.

Similar results are obtained for other time periods validating shortest path
as a good feature for fraud detection. In these periods, with the exception of
a fraudulent transaction where a prior relationship existed, a minimum of 39%
false positive reduction was obtained; the smallest improvement was 13.9% false
positive reduction using the reverse shortest path (and an AUC of only 0.52). We
have explored many variants such as building graph models from transactions
over a larger time period. In the 4-week graph models in Figure 3 there is a small
percentage (about 5%) of normal transactions whose endpoints don’t appear in
the 4 week graph i.e. the accounts were inactive for the previous four weeks.
This impacts the accuracy of classifiers we can build with this feature. Building
models with larger windows of transactions will reduce the number of inactive
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Fig.4: Distribution of shortest path for transaction in the period 2012-08-17
through 2012-08-23 using a ten-week graph model

accounts: building a graph model from 10 weeks of transactions from June 1,
2012 through Aug 16, 2012 reduces the number of inactive accounts to about
1.8%. As Figure 4 shows, scoring two weeks of subsequent transactions with
this graph model displays the same statistical discrimination. Note however that
there is a fraudulent transaction where the endpoints conducted a valid trans-
action before. A longer version of this paper will report on discrimination using
shortest distance weighting by the value of the edge. These results show that
shortest path and distance and their variants provide excellent discrimination
between normal and fraudulent transactions.

5.2 Strongly Connected Components

A strongly connected component (SCC) is a subgraph such that all pairs of
vertices are connected. We use SCC as a notion of bi-directional transitive trust:
when account z pays account y, if x and y are in the same strongly connected
component, then, in theory, money already flows from z to y, and money flows
from y back to . When there exists a path from z to y, yet there is no return
path, we can view y as a sink account. Paying money into sink accounts could be
risky and we suspect such sink account (or entire subgraphs) to be suspicious.
However, these may be external accounts for which we do not have visibility.

We evaluate the following aspects of strongly connected components: size and
distribution of SCCs, impact of window size on SCCs, whether the two accounts
involved in a transaction are members of the same SCC.

The sizes of strongly connected components naturally follow a powerlaw and
the size of the largest components increases with the length of the time window.
Unlike other clustering methods, adding a new transaction can only merge two
SCCs into one, making it easily adapted to real-time applications and SCC num-
bers can be stored and later looked up. This is important because the smaller the
component, the less likely the two randomly selected accounts will be members
of the same SCC.



Transactions and Strongly Connected Components We use strongly con-
nected component for identifying fraudulent transactions and reducing false pos-
itives based on the hypothesis that transactions within an SCC are less likely to
be fraudulent than transactions than span two strongly connected components.
Such edges (transactions) in graph theory are known as bridges.

To evaluate, we build graphs for one- two- and four-week windows that ad-
vance one week at a time. Next, transactions for a target period are scored
against the strongly connected components and placed into one of four cate-
gories: the source and destination accounts are in the same SCC; source end
destination accounts are in different strongly connected components, but a prior
transaction exists; source and destination accounts are in different strongly con-
nected components and a prior transactions does not exist; either the source or
destination accounts was inactive and is not a member of any strongly connected
component

The results from our ten week experiment are shown in Figure 5, clearly
illustrating that two accounts are more likely to be in the same SCC, or have a
prior transaction, for the benign transactions than the fraudulent transactions
(the null hypothesis is rejected). We also measure the increase in conditional
probability given which of the four classes the transaction falls into. We summa-
rize these results using the conditional probability gain by grouping all graphs
(one, two, four, and ten week windows) based on their duration in Table 1. We
can clearly see that the majority of fraudulent transactions occur where one of
the endpoints was previously inactive or the accounts are members of different
strongly connected components.

Window Size Gain
Random False Positives True Fraud

prior brior e 1 0.58
o 2 L
3 2.68

Inactive 4 2 . 1 3
10 4.88

Fig.5: SCC results for transactions 2012-08-17 Table 1: Conditional prob-
through 2012-08-30 on graph from prior ten weeks. ability gain from SCCs.

5.3 Page Rank

PageRank [6] is an algorithm for measuring the importance and trust in accounts,
originally developed to model the importance of web pages. In our graphs PageR-
ank measures the reputation of an account in terms of the payments made to
it. Our hypothesis is that accounts with a high PageRank are less likely to be
fraudulent. In the PageRank algorithm, an account evenly distributes its own
PageRank to the accounts it pays, and the algorithm iterates until convergence:
PR(u) = 54 + A ver) %, where P(u) is the set of accounts u pays and
d is a damping factor. Originally, the damping factor modeled the probability a
random web surfer stops on a page. In financial transactions, the damping fac-
tor can be used to model an account saving. We use a default constant damping
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Fig.6: Distribution of PageRank for transactions during 2012-06-29 through
2012-07-05 in graph constructed from the previous four weeks of transactions.

factor of 0.85; future work will explore using a per-account damping factor based
on past spending behavior.

PageRank can be used either unweighted or weighted. In the weighted form,
the distribution of an account’s PageRank to its neighbors can be made pro-
portional to the transaction amount. Alternatively, we could weight edges based
on the number or frequency of the transactions. This may not be accurate as
it is possible to send messages and hence use mobile payments as a chat ser-
vice with €0.01 transactions. However, since frequent payments can indicate a
level of trust, future work will investigate this method of weighting edges. We
experiment with four different versions of PageRank: Forward unweighted, For-
ward weighted, Reverse unweighted, Reverse weighted. In the reverse forms, we
reverse the directions of the transactions with the intuition that accounts per-
forming many transactions are less likely to be in fraudulent transactions. We
evaluate all four forms of PageRank against the same sample graphs used to
evaluate shortest path: compute PageRank on a four-week graph and use that
to score transactions from the subsequent week. In each case, we use PageR-
ank of the source and destination accounts and evaluate the following question:
does the PageRank for victims or destination account of fraud follow a different
distribution than randomly selected accounts?

Figure 6 shows an example of how PageRank of the destination discriminates
between normal and fraudulent transactions which is also seen in other periods
evaluated. Table 2 shows the average performance of using the variants of the
PageRank algorithm The unweighted PageRank of the destination produces a
respectably average 39.3% reduction in false positives (ranging from 22-48%).
Using the weighted version improves the reduction to 44.54% on average. The
reverse PageRank of the source produces less impressive but useful reduction of
16.98% on average and 17.70% for the weighted version.

5.4 Clustering

We use clustering techniques to discover accounts which have similar profiles
e.g. connectedness and transactional patterns, and score transactions based on
whether they are consistent with the cluster. In particular, we use prior models



Feature evaluated ‘Average ZER‘Average AUC

PageRank of Destination 39.575% 0.760
Weighted PageRank of Destination 44.54% 0.788
Reverse PageRank of Source 16.98% 0.625
Weighted Reverse PageRank of Source 17.70% 0.652

Table 2: PageRank Results

of inter-cluster transaction likelihoods to score the transaction risk. We explore
different features for clustering, each providing a different perspective on the
data: basic features of vertices such as the number of outgoing edges, distinct
destinations, incoming edges and accounts, types of edges (external, foreign,
etc.); egonet features are extracted from the egonet of a vertex including weight
and number of all transactions, number of distinct transactions of each type,
number of nodes of each type etc.; connectivity features represent transactional
information. We build an undirected graph where vertices denote accounts, and
edges represent transactions. The edges are weighted by a function of the number
of transactions and the total transaction amount between the two accounts.

Clustering algorithms: We use the BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) [30] algorithm to cluster basic and egonet features
since they represent accounts as vectors in a multi-dimensional space. BIRCH is
an algorithm which performs hierarchical clustering over a very large data-set,
and is known to handle well very large and noisy data sets. We use the Markov
Cluster (MCL) algorithm [28] to cluster nodes connected to endpoints similarly
based on the connectivity features. MCL is a fast and scalable cluster algorithm
for graphs based on simulation of random flow in graphs.

Cluster evaluation: Since known class membership labels are not available,
we measure the results by cluster quality: how homogenous the clusters are
and how well clusters are separated. Another measure is cluster stability across
different time periods. We evaluated these strategies against the 1-week and
4-week transaction graphs. The produced clusters have excellent homogeneity,
separation and stability for both egonet and basic features. We defer the detailed
cluster evaluation figures to a longer version of the paper.

Using Clusters for Scoring: We hypothesize that accounts in the same clus-
ter will have similar spending habits, i.e., pay similar accounts. We test this
by investigating the inter-cluster transitions i.e. for all transactions from source
accounts in the same cluster, we measure the distribution of the destination
account clusters. We evaluate whether cluster-to-cluster distribution for fraudu-
lent transactions deviates from that obtained by the false positives and random
transactions. We show a single result leaving the rest to a longer version of the
paper. We observed such spikes across multiple time periods for the clusters pro-
duced using the basic features. However, almost all fraudulent transactions are
inter-cluster with egonet features, limiting its ability to score transactons.
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Fig. 7: Outgoing cluster transitions illustrating anomalous spikes for fraudulent
transactions.

5.5 Egonet Features

Egonets, or subgraphs of radius two centered around a single account (the ego
node) yield features similar to those obtained from the basic analysis. The egonet
includes any transaction between the neighbors of the ego node, making concepts
such as “incoming” and “outgoing” transactions and accounts, as used in the
basic features, less meaningful. However transactions may be classified as those
including the ego node, and those strictly between the neighbors of the ego node.
Egonets have been studied extensively for anomaly detection in social network
graphs and corporate graphs. For example, egonets have been used to analyze
the Enron email corpus [16], political donations, and blogs. We investigate the
use of a suite of egonet based anomaly detection features called OddBall [2].
OddBall explores powerlaws that exist between properties of an egonet: For
example, in an undirected graph, the number of edges in an egonet of n vertices,
is bound between n — 1 and n * (n — 1), giving a powerlaw between 1 and 2
approximately. OddBall analyzes such relationships for common properties of an
egonet, computes powerlaws, and identifies anomalies that deviate significantly
(are far from a regression line) or are in areas of low density (are not near other
accounts when plotted by egonet properties). Several properties of egonets are of
interest, mainly the number of nodes, the number of edges (total and distinct),
the total weight of the edges, and the principal eigenvalue.

We evaluated how well OddBall performs at identifying accounts involved in
fraudulent transactions, either the victim or the fraudster. The results indicate
egonets are a poor indicator of malicious activity in financial networks, however
they were successful in identifying several anomalous accounts. Figure 8 presents
a scatter plot of two properties of an egonet, egonode was involved in fraud
(green squares and red triangles), and the anomalies (yellow triangles). These
anomalous accounts are actually vostro accounts, accounts for other banks held
for accounting purposes, and should not be considered malicious.
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6 Scalability

This section briefly discusses the scalability of the graph analytics discussed. To
be effective in practice, a fraud detection algorithm must be able to score all
transactions, in real-time (under 100ms). Any property that depends on a single
account, such as which SCC the account belong to, or the PageRank, can be
precomputed. Properties that require the pair of accounts, such as the shortest
path, are prohibitive to precompute and store, and must be computed in real-
time. For large graphs, however, a single shortest path query can be costly; in
some of our experiments exceeding 30 seconds. To handle throughput, we seek
solutions which don’t require massive parallelism or special hardware.

Architectural differences, such as faster processors and memory, typically
yield a 2-8x performance increase, falling short of our goals. By bounding the
maximum length of the paths, we can ensure that most queries are returned in
sufficient time, however graphs and accounts with high branching factors still
yield queries that are exhaustive and search the entire graph. Instead, we use
approximation algorithms that store minimum spanning trees for a select sub-
set of vertices, in an approach similar to other approximate algorithms [1,15].
Unlike [1], we store a small number (100) of spanning trees, reducing pre-
computation time from hours to minutes, and drastically reducing storage costs.
To improve approximations that aren’t the result of intersections between two
spanning trees, we perform a breadth first search that caps the number of edges
evaluated to ensure termination in a few ms. Our experiments used NeodlJ, a
graph database for storing and processing some of the data, but the performance
was inadequate. We store computed features in MongoDB, and use graph-tool,
a Python Boost graph library package, for some algorithms, such as PageR-
ank. Our shortest path approximation was implemented in C++. All tests were
performed on an AMD Opteron 8439 with 256 GB RAM.



7 Classifiers

While our primary objective was to reduce the number of false positives, we
experimented with building classifiers, using only graph features evaluated and
computable in real-time. We restricted our classifiers to features derived from
SCC, PageRank, and shortest path (forward, reverse, and undirected). We divide
transactions into one month graphs and train a support vector machine (SVM)
classifier with a radial bias function (RBF) kernel on the first month and test on
the remaining data. All features are extracted from the graph pertaining to the
prior month and zero-mean unit-variance normalization is performed (relative
to the first month’s features). The results are shown in Figure 9, which also indi-
cates how currently deployed analytics perform. Because the deployed analytics
make use of rules and blacklists, they cannot be parameterized and we can only
represent them as a point on the ROC curve. These rules may reject transactions
due to failed PIN or TAN, known mule accounts, or phishing campaigns. Note
that the task here is different than previous sections, where the task was false
positive reduction (the positive class is benign) while here it is fraud detection
(positive class is fraudulent).

The results are clearly encouraging for the use graph features for fraud scor-
ing. Our highest performing classifier reached an AUC score of 0.93; higher than
the optimistic binary evaluations shown in the previous section. Importantly,
this implies the features some of the features are independent, and combining
them may yield better results. It is only built on three types of features: shortest
path, SCC, and PageRank, but identifies many fraudulent transactions missed
by the deployed analytics. The classifiers here built on graph feature alone cur-
rently yield too many false positives to be deployed in practice. However, graph
models contribute a new set of features and we expect that ensemble classifiers
built from these and traditional features to be substantially more accurate.

Further work is needed on selecting the optimal time window, or windows, for
producing graphs. The same one-month graph is used to score a month’s worth
of transactions, and not one week as we used previously. Here we observed a drop
in AUC scores for the shortest path features, from 0.95 to 0.67 for example, but
by combining all shortest path computations we were able to improve to an AUC
of 0.888. Of course, best results are expected with ensembles of graph features
and current fraud scoring mechanisms.

8 Conclusion

We have described a new approach to cross channel fraud detection based on
graph analytics. Our results show that graph features can provide excellent dis-
crimination between fraudulent and normal transactions. This strengthens our
belief that graphs of financial transactions form accurate representations of ac-
tual social communities and relations. We expect that improvements in the scala-
bility of graph analytics, this new approach can be a feasible solution to enhance
the accuracy of fraud detection. Further, they offer a default fraud model for all
new transaction channels. We expect that graph models will also be beneficial
to applications such as commercial banking and anti-money laundering.



A 7T
i

Existing Analytics "

o4
o

o
s

True Positive Rate

0.2]

, — AUC: 0.888
xd — AUC: 0.930
0.0 — AUC: 0.931|

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig. 9: Classifier performance using only graph features: Shortest path and SCC
(blue), adding BFS query properties (green), and adding PageRank (red).

References

1.

2.

10.

11.

R. Agarwal, M. Caesar, B. Godfrey, and B. Y. Zhao. Shortest paths in microsec-
onds. CoRR, abs/1309.0874, 2013.

L. Akoglu, M. McGlohon, and C. Faloutsos. Anomaly Detection in Large Graphs.
Technical Report CMU-CS-09-173, Carnegie Mellon University, Nov. 2009.

E. Aleskerov, B. Freisleben, and B. Rao. CARDWATCH: a neural network based
database mining system for credit card fraud detection. In IEEE/IAFE 1997
Computational Intelligence for Financial Engineering (CIFEr), 1997.

M. Bond, O. Choudary, S. J. Murdoch, S. Skorobogatov, and R. Anderson. Chip
and Skim: Cloning EMV Cards with the Pre-play Attack. Security and Privacy
(SP), 2014 IEEE Symposium on, pages 49-64, 2014.

R. Brause, T. Langsdorf, and M. Hepp. Neural data mining for credit card fraud
detection. 11th International Conference on Tools with Artificial Intelligence. TAI
99, pages 103-106, 1999.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and {ISDN} Systems, 30(17):107 — 117, 1998. Proceedings of
the Seventh International World Wide Web Conference.

A. Brown, D. Divitt, and A. Rolfe. Card Fraud Report 2015. Technical report,
Alaric, Mar. 2015.

E. Duman and I. Elikucuk. Solving Credit Card Fraud Detection Problem by
the New Metaheuristics Migrating Birds Optimization. In Advances in Compu-
tational Intelligence, pages 62—71. Springer Berlin Heidelberg, Berlin, Heidelberg,
June 2013.

P. S. Fader, B. Hardie, and K. L. Lee. RFM and CLV: Using iso-value curves for
customer base analysis. Journal of Marketing Research, 42(4):415-430, 2005.
FICO. FICO Falcon Fraud Manager for Debit and Credit Card. Technical report,
FICO, 2012.

fiserv. fiserv: Compliance & fraud management. https://www.fiserv.com/
risk-compliance/financial-crime-risk-management.aspx, 2015.



12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

N. Z. Gong, M. Frank, and P. Mittal. SybilBelief: A Semi-Supervised Learning
Approach for Structure-Based Sybil Detection. IEEE Transactions on Information
Forensics and Security, 2014.

N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar, and D. Song.
Evolution of social-attribute networks: measurements, modeling, and implications
using google+. In the 2012 ACM conference, pages 131-144, New York, New York,
USA, Nov. 2012. ACM.

C. Grier, K. Thomas, V. Paxson, and M. Zhang. @ spam: the underground on
140 characters or less. Proceedings of the 17th ACM conference on Computer and
communications security, pages 27-37, 2010.

A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and accurate esti-
mation of shortest paths in large graphs. In CIKM ’10: Proceedings of the 19th
ACM international conference on Information and knowledge management, pages
499-508, 2010.

B. Klimt and Y. Yang. The enron corpus. In In ECML, pages 217-226, 2004.

R. C. C. F. Leman Akoglu. Opinion Fraud Detection in Online Reviews by Network
Effects. In International AAAI Conference on Weblogs and Social Media, pages
1-10, Apr. 2013.

S. Maes, K. Tuyls, and B. Vanschoenwinkel. Credit card fraud detection using
Bayesian and neural networks. In Proceedings of the 1st international NAISO
congress on neuro fuzzy technologies, 2002.

A. Mislove, M. Marcon, P. K. Gummadi, P. Druschel, and B. Bhattacharjee. Mea-
surement and analysis of online social networks. Internet Measurement Comfer-
ence, pages 29-42, 2007.

S. J. Murdoch, S. Drimer, R. Anderson, and M. Bond. Chip and PIN is Broken.
In 2010 IEEE Symposium on Security and Privacy, pages 433-446. IEEE, 2010.
Nakamoto and Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009.
NICE. Nice actimize: Fraud detection & prevention. http://www.niceactimize.
com/fraud-detection-and-prevention, 2015.

RSA. RSA Discovers Massive Boleto Fraud Ring in Brazil. Technical report, EMC,
July 2014.

S. Saini, J. Chang, and H. Jin. Performance Evaluation of the Intel Sandy Bridge
Based NASA Pleiades Using Scientific and Engineering Applications. In High Per-
formance Computing Systems. Performance Modeling, Benchmarking and Simula-
tion, pages 25-51. Springer International Publishing, Cham, Nov. 2013.

D. Sanchez, M. A. Vila, L. Cerda, and J. M. Serrano. Association rules applied to
credit card fraud detection. FExpert Systems with Applications: An International
Journal, 36(2):3630-3640, Mar. 2009.

A. Shen, R. Tong, and Y. Deng. Application of Classification Models on Credit
Card Fraud Detection. In 2007 International Conference on Service Systems and
Service Management, pages 1-4. IEEE, 2007.

M. Syeda, Y.-Q. Zhang, and Y. Pan. Parallel granular neural networks for fast
credit card fraud detection, volume 1. IEEE, 2002.

S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of
Utrecht, 2000.

V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu, M. Snoeck,
and B. Baesens. APATE: A novel approach for automated credit card transaction
fraud detection using network-based extensions. Decision Support Systems, 75:38—
48, July 2015.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering
method for very large databases. ACM SIGMOD, 25(2), 1996.



