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Abstract. Secure two party computation (2PC) is a well-studied prob-
lem with many real world applications. Due to Cleve’s result on general
impossibility of fairness, however, the state-of-the-art solutions only pro-
vide security with abort. We investigate fairness for 2PC in presence of
a trusted Arbiter, in an optimistic setting where the Arbiter is not in-
volved if the parties act fairly. Existing fair solutions in this setting are
by far less efficient than the fastest unfair 2PC.

We close this efficiency gap by designing protocols for fair 2PC with
covert and malicious security that have competitive performance with
the state-of-the-art unfair constructions. In particular, our protocols only
requires the exchange of a few extra messages with sizes that only depend
on the output length; the Arbiter’s load is independent of the compu-
tation size; and a malicious Arbiter can only break fairness, but not
covert/malicious security even if he colludes with a party. Finally, our
solutions are designed to work with the state-of-the-art optimizations ap-
plicable to garbled circuits and cut-and-choose 2PC such as free-XOR,
half-gates, and the cheating-recovery paradigm.

Keywords: secure two-party computation, covert adversaries, cut-and-choose,
garbled circuits, fair secure computation, optimistic fair exchange.

1 Introduction

In electronic commerce, privacy and fairness are two sought-after properties as
depicted in work related to contract signing and fair exchange [5,14,49,9,6,8,21].
Fair exchange is used in electronic payments to buy or barter items [12,43] and
contract signing is often used to ensure fairness: either all parties sign and agree
on the contract, or the contract is invalid.

Fair secure two-party computation (2PC), a fundamental problem in cryp-
tography, can be used to address both the privacy and fairness concerns, si-
multaneously. Alice and Bob would like to jointly compute a function of their
private inputs, such that nothing other than the output leaks, and either both
parties learn the output or either do (e.g. two banks trying to calculate a joint
credit score for a customer, without giving away critical private information).
Unfortunately, however, there is a significant efficiency gap between secure 2PC
that achieve fairness and their unfair counterparts that have been the subject of
many recent implementations and optimizations.
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2PC Without Fairness: Yao [61] introduced the first 2PC with security
against honest-but-curious adversaries [46] and a large body of recent work has
focused on making 2PC practical in presence of stronger (covert and malicious)
adversaries [50,47,7,54,45,23].

The cut-and-choose paradigm is a popular method for enhancing the security
of Yao’s garbled circuit protocol to the case of malicious (or covert) adversaries
where the players can deviate arbitrarily. In a nutshell, in this paradigm, one
player (Alice) garbles many circuits while the other player (Bob) checks a ran-
domly chosen subset (to ensure that the garbling was done correctly) and eval-
uates the rest. Until recently, many existing solutions (e.g. [51,47,48,59,52,60])
required garbling at least 3s circuits to detect cheating with probability 1 —277.
The high number of garbled circuits is due to the fact that all these constructions
ask that the evaluator computes a “majority output” and, for it to be valid, re-
quire that more than half of the evaluated circuits are correct. For the majority
output to be valid, parties also need to enforce equality of the garbler’s input
to the majority of the circuits evaluated. This is often handled via a procedure
called input-consistency check.

The recent work of Lindell [45] shows how to reduce the number of gar-
bled circuits by a factor of 3.3 In this approach, the second player evaluates
the unchecked circuits, but is content with computing only one correct output
(instead of a majority output) due to a cheating-detection component. This
allows one to reduce the number of circuits to s and still achieve 1 —277 security.

A more modest security guarantee for 2PC is covert security, proposed
by Aumann and Lindell [7], which provides a practical alternative to the ma-
licious setting. In this setting, the adversary can cheat with some small but
non-negligible probability. The rationale is that a reputable real-world entity
will not risk getting caught with non-negligible probability due to loss of reputa-
tion or the legal/economical costs. The protocols in the covert setting are more
efficient than their malicious counterparts. For instance, in the cut-and-choose
paradigm, one can settle for only garbling s = 5 circuits if 1 —1/s = 4/5 proba-
bility of getting caught is prohibitive enough. Back to our two banks computing
a customer’s credit score scenario, the financial losses when a bank gets caught
cheating can be seen as prohibitive as a negligible probability of cheating.

2PC with Fairness: All the above-mentioned work focus on security with
abort, where the malicious party is allowed to abort the protocol after he learns
the output of the computation, but before the honest party obtains the output,
because it is known that achieving general fairness is impossible [20]. This limits
the real world applicability of the most efficient solutions. An interested corpo-
ration is less likely to adopt 2PC solutions if it has to risk being at a competitive
disadvantage by revealing the outcome of the computation to a competitor with-
out learning it itself.

3An alternative approach for reducing the number of circuits by a factor of 1.5 was
introduced by [27].



There are two main approaches for achieving fairness in general-purpose
2PC.* (i) Gradual release-based approaches let Alice and Bob reveal each
other’s output piece by piece, using super-constant rounds [55,33,58,57]. (ii) Ar-
biter-based approaches achieve constant round complexity by assuming that
a trusted third party is available when needed [18,44,31,32]. Optimistic ap-
proaches employ the Arbiter only if there is a dispute among the parties [5].

The most relevant work to ours is that of Cachin and Camenisch [18], and
the follow up work of [31], in the same optimistic Arbiter-based setting. Both
constructions utilize zero-knowledge proofs that require public-key operations,
and hence have a high computational cost compared to the state-of-the-art cut-
and-choose 2PC. Furthermore, in [18], the Arbiter may need to redo almost the
whole computation in case of a malicious behavior, which creates a bottleneck
in the system.

Lindell’s optimistic framework [44], on the other hand, necessitates an elec-
tronic payment system. It is possible that one party obtains the output of the
computation, whereas the other obtains a payment. [1,2,15,30,37,43] also em-
ploy such penalty-based fairness models. These constructions are incomparable
to ours as they work in a different setting and make different assumptions. See
Table 1 for a list of the main differences between these work and ours.

[18] [44] [31]
Resolutions with Arbiter Requires a payment Efficiently adds fairness,
take time proportional to| system and employs but to zero-knowledge

the circuit size penalty-based fairness. | based 2PC protocols only.

Table 1. Comparison to the most related previous work.

Our Contribution: In this paper we investigate fairness for 2PC in presence
of a trusted Arbiter in an optimistic setting, where the Arbiter is not involved
if the parties act fairly. We design efficient protocols for fair 2PC with security
against covert and malicious adversaries. Our constructions follow the cut-and-
choose paradigm, and for the first time, close the efficiency gap between fair 2PC
and the state-of-the-art unfair solutions, in this setting. In particular:

v" The overhead of our protocols against state-of-the-art unfair solutions is
small; only a constant number of extra rounds and a few messages with sizes
that only depend on the output length.

v" The Arbiter’s load is minimal, and independent of the size of computation.

v A malicious Arbiter can only break fairness, but not covert/malicious secu-
rity even if he colludes with a party. We prove this via a simulator for the
usual security with abort definition, when the adversary is also controlling
the Arbiter.

v' Our protocols are compatible with optimizations applicable to cut-and-
choose 2PC such as free-XOR, [36], FleXor [35], and half-gates [62]. It also
utilizes the cheating-recovery paradigm, and hence uses a reduced number
of garbled circuits. These render our protocols the most efficient fair secure
computation protocols to date.

4A different line of work focuses on achieving fairness not in general but for specific
applications [25,3,16,22,17].



v' Our work is the first to consider fairness in the covert adversary model.

2 Overview of Our Constructions

We review the high level ideas behind our covert and malicious 2PC construc-
tions next, emphasizing the non-trivial parts. Our starting point in each case
is the state-of-the-art protocol with security with abort (in the cut-and-choose
paradigm). We then show how to enhance and modify each at very low cost in
order to obtain fairness in the presence of an Arbiter.

Some of our techniques are similar to that of Kiling and Kiipgii [31] who also
provide an efficient solution for fair 2PC in the same setting. Similar to ours,
their solution employs commitments to output labels, and verifiable escrows.
But they instantiate these using zero-knowledge proofs of knowledge. In fact,
verifiable escrow inherently employs zero-knowledge proofs. When one switches
to the cut-and-choose setting, it is unclear how to deal with the multitude of such
commitments and verifiable escrows, and still preserve correctness and efficiency.
Our solutions are the first to combine optimistic Arbiter-based fairness and the
cut-and-choose paradigm efficiently.

2.1 Fair Covert 2PC

There are various ways of combining fairness and covert security in a simulation-
based definition. In this paper we consider the natural notion where both fairness
and correctness/privacy are guaranteed with a reasonable (not all-but-negligible)
probability 1 — e but both fairness and correctness/privacy are lost with proba-
bility € against active cheating. A related notion to fairness in the covert setting
is 1/p security [24,28]. In that line of work [26,53,11,10], the ideal world provides
complete fairness (as in our case for malicious adversaries), but the simulation
only needs to achieve 1/p indistinguishability between the ideal and real worlds.
Our approach is slightly different: we directly take the covert adversary model
[7,4], and modify it to preserve fairness unless the adversary cheats and remains
undetected. Note that the 1/p security does not explicitly model detection of the
adversary’s misbehavior. It is an interesting question to understand the relation
between the two notions. Next, we review the main technical difficulties in our
covert construction.

Security with Abort. Recall the covert 2PC protocol of Aumann and
Lindell [7]. Alice generates s garbled circuits GCy,...,GC,. Then, the parties
perform ¢ (number of input bits) oblivious transfers (OTs) for Bob to learn
his garbled inputs (this is intentionally done for all s circuits and before the
opening). Alice sends the s garbled circuits to Bob. Parties then perform a coin-
toss to choose a random index e € {1,...,s}. Alice opens the secrets for all
garbled circuits and OTs except for the e one. Bob checks correctness of the
opened circuits and the corresponding OTs, and aborts if cheating is detected.
Else, Alice sends her garbled inputs for the et® circuit. Bob evaluates the circuit
and learns his own output. He also obtains the garbled values for Alice’s output,
which he sends to her for translation.

It is easy to see that the above construction is not fair. We now highlight the
main changes we make to this protocol to achieve fairness.



Delay Evaluator’s Output Translation. Note that Bob can abort the
protocol immediately after learning his output and without forwarding Alice’s
output to her. Therefore, we modify the protocol so that Alice does not send to
Bob the translation table for his output (mapping output labels to actual bits)
until he sends Alice’s garbled output to her. But note that this trivial change
fails since now Alice can abort before sending the translation table to Bob.

Hence, we need to ensure that if Alice aborts at this stage, Bob has enough
information to invoke an output resolution protocol with the Arbiter and show
evidence that he has been following the steps of the protocol and hence deserves
to know the output. After checking Bob’s claim, the Arbiter should be able to
provide him with sufficient information to decode his output.

Prove Bob’s Honesty to the Arbiter. Notice that efficiently proving
this is a non-trivial task. For example, in [18], the Arbiter and the resolving
party re-perform almost the whole computation for this purpose. In our case,
Bob’s proof of following through with the protocol will be the garbled output he
computes for Alice’s output. Note that due to the output-authenticity property of
the garbling scheme, Bob cannot forge this value except if he honestly computes
the output. In order to enable the Arbiter to check the validity of Bob’s claimed
output label, Alice will send hashes of her output labels (in permuted order) to
Bob along with the garbled circuits, and a signature for the e’ one. Bob verifies
validity of these hashes for the opened circuits. Now when he goes to the Arbiter,
he shows both the output labels he obtained for Alice’s output, and the signed
hashes for the e!” circuit. The Arbiter can verify that the two are consistent, by
ensuring that there is one output label provided per pair.

Equip the Arbiter with the Translation Table for Bob’s Output.
Furthermore, the Arbiter should have sufficient information to pass along to
Bob for decoding his output. Hence, Alice encrypts the translation table for
Bob’s output under the Arbiter’s public key and sends it to Bob along with the
garbled circuits, and a signature for the e'® one. Bob checks validity of these
encryptions for the opened circuits. Once Bob’s claim of behaving honestly is
verified, the Arbiter can decrypt the translation table, and send it to Bob for him
to decode his output. The signature is needed to make sure that Bob is sending
a legitimate decoding table for decryption. Since Bob verified the opened ones,
he is ensured, with good probability, that the " decoding table is proper.

Simulation-based Proof with Fairness. One important difference be-
tween our proof and those of standard 2PC is that in our case the ideal trusted
party must only be contacted by the simulator once it is certain that both
parties can obtain the output, as first observed by Kiling and Kiipgii [31] for
indistinguishability of the ideal and real world outputs. Therefore, to overcome
this difficulty, Alice also commits to Bob’s output translation tables as c” using
a trapdoor commitment, and opens them for the opened circuits. Bob ensures
that the committed and encrypted translation tables are the same (in fact, we
encrypt the commitment openings). For the e circuit, she opens ¢ at the last
step of the protocol. The reason we need these commitments is that, unlike stan-
dard covert 2PC, the Alice simulator in the proof for the case of corrupted Bob



does not have fp(za,2’;) when sending the garbled circuits (since in the fair
protocol neither party may learn the output at this stage), and hence cannot
embed the output in the e'” one at that stage. With trapdoor commitments, at a
later stage, she is able to open the translation to something different in order to
ensure the “fake” evaluation circuit evaluates to the correct output fg(za, ).
The hiding property of the commitment scheme ensures indistinguishability of
the simulator’s actions.

Handle Premature Resolutions. The parties have the right to contact
the Arbiter. But they may choose to do so at a stage other than the prescribed
one. For example, Bob may invoke the output resolution before he sends Alice’s
output labels to her. This behavior is mitigated by requiring that Bob provides
the Arbiter with Alice’s output labels that match the signed decoding table. Due
to output authenticity of the garbling scheme and unforgeability of the signature
scheme, Bob cannot cheat against the Arbiter and must provide correct labels.
Later on, Alice can recover her output through her own output resolution pro-
tocol. A timeout mechanism ensures that Bob must contact the Arbiter during
a predefined time®, and immediately after that Alice can contact the Arbiter,
without waiting indefinitely.

A Note on Synchronicity. Observe that we employ a timeout for res-
olutions with the Arbiter. Katz et al. [29] define a very nice framework for
integrating synchronicity in the Universal Composability [19] framework. They
provide a clock functionality which allows all honest parties to proceed further
once a particular clock signal is reached, allowing for synchronous protocols. In
that setting, they show input completeness and guaranteed termination can be
achieved together (though not necessarily fairness). In our protocols, the only
place we employ loosely synchronized clocks is for resolutions with the Arbiter.
The remaining (optimistic) part of the protocol employs no synchronicity as-
sumptions (just local network timeouts). There are two main reasons we choose
to proceed this way: (1) Due to a result by Kiipgii and Lysyanskaya [41] (see
also [40]), if one would like to employ multiple autonomous (independent) enti-
ties to replace a single trusted Arbiter, we are forced to employ timing models.
(2) Optimistic fair exchange literature shows that the timeout-based resolutions
can be exchanged with slightly more expensive protocols (with one more round)
that provide fairness without requiring timeouts (see e.g. [5,43]). We believe a
similar methodology may be employed here to replace the timeouts, and leave
such an extension to our protocols as future work.

Proof overview. We obtain security against malicious Bob as follows: The
simulator acts as Alice, except that she commits to and encrypts random val-
ues instead of actual output decoding table in ¢Z,dZ. Towards the end, if the
simulator obtains proper output labels for Alice’s output from the adversar-
ial Bob, then she contacts the ideal trusted party to learn Bob’s output and
simulate opening of ¢Z to the actual values. Hiding commitments ensure indis-
tinguishability of Alice’s behavior. If; instead of sending them directly to Alice,

5Such timeout mechanisms are easy to implement and standard in the optimistic
fair exchange literature (see e.g. [5,43]).



Bob contacts the Arbiter and performs a proper resolution, the simulator simu-
lates the Arbiter, and upon receiving proper output labels for Alice, contacts the
ideal trusted party for obtaining Bob’s output. She then sends the correspond-
ing decoding table as if it was the decryption of dZ. Semantic security ensures
indistinguishability of Alice’s and Arbiter’s behavior.

For security against covert Alice, different from the unfair scenario, the sim-
ulator contacts the ideal trusted party if Alice acts properly, and obtains Alice’s
output. He sends the corresponding labels back to Alice. He simulates by himself
Bob’s Arbiter resolution should Alice not respond back with Bob’s output la-
bels’ openings. If Alice later contacts the Arbiter for resolution, he returns back
Alice’s output labels again.

2.2 Fair Malicious 2PC

Security with Abort. Our starting point is the cut-and-choose 2PC of Lindell
[45], which contains a cheating-detection component to remove the requirement
that majority of the circuits are correct, and hence reduce the number of circuits
by a factor of 3.

In this protocol, Alice garbles s circuits GCy, . .., GC4 with the exception that
she uses the same output labels for all circuits. Parties also perform ¢ OTs for Bob
to learn his input labels. Bob then chooses a random subset of these circuits to be
evaluated, and the rest are to be opened and checked for correctness later. Bob
evaluates the evaluation circuits. Since output labels are reused for all circuits,
Bob expects to retrieve the same labels from all evaluations. If this is indeed the
case, he only needs to ensure that one of the evaluations was correct in order to
make sure he has the correct output. If Bob obtains different labels for at least
a single output wire, he uses the two distinct labels Wy and W; corresponding
to values 0 and 1, as his proof of Alice’s cheating.

At this stage, parties engage in a cheating-detection phase, which itself is a
malicious cut-and-choose 2PC for evaluating a cheating-detection (CD) circuit.
This cut-and-choose is performed using 3s circuits (and a majority output),
but since the CD circuit is significantly smaller, this will be a small overhead,
independent of the actual circuit’s size. The CD circuit takes W, and W; as Bob’s
input (his evidence of Alice’s cheating), and takes Alice’s input z 4 to the original
computation as her input. If Bob’s two labels are valid proofs (Alice embeds the
output labels in the CD circuits, and the CD circuit checks whether Bob’s two
labels are among them), he learns Alice’s input 4 and can compute f(z4,xp)
on his own. Otherwise he learns a random value. It is important that Alice does
not know whether Bob learned the output by evaluating the computation circuits
or the cheating-detection circuits. Alice then opens the check circuits and Bob
aborts if any of the checks fail. Else, he sends Alice’s output labels to her.

Handle Alice’s Input Consistency. Deviating from [45], we handle the
consistency of Alice’s inputs using the technique of [60], as it seems more suitable
for the tweaks we need to make to input-consistency. In this approach a universal
hash function (UH) is evaluated on her input inside the circuits, and Bob verifies
that the output of this function is the same in all circuits. Alice’s input is padded



with a short random string 7, in order to increase its entropy and reduce the
amount of information that can be learned about the input from the output of
the UH. Let ¢ be the input length and s’ be a security parameter. [60] shows
that a random matrix of dimensions s’ x (£ + 2s’ 4+ log s’) over GF(2) can be
used as a UH, where the evaluation consists of multiplying this matrix with the
input vector (and getting a vector of length s’).

Delay Bob’s Output via a One-time Pad. Similar to the covert 2PC,
it is easy to see that the above construction is not fair. In particular, Bob can
abort the protocol immediately after learning his output and without forwarding
Alice’s output to her. But unlike our fair covert 2PC, delaying the transmission
of the output translation table is not sufficient for preventing Bob from learning
his output early. Since the same output labels are used for all circuits and a
fraction of them are opened, Bob can reconstruct the translation table on his
own after the opening phase, and learn his output.

To overcome this issue, we encrypt Bob’s output using a one-time pad padp
that is Alice’s additional input to the computation circuit. In particular, the
circuit returns fgp(xa,xp) ® padp as Bob’s output, and the padpg itself is only
revealed in the final step of the protocol. Alice’s output in the circuit is also
encrypted using a separate pad pada of her choice, to prevent Bob from learning
her output even after the opening.

Commit to the Consistent Pad. Note that simply revealing the padg to
Bob does not provide Bob with sufficient guarantee that it is the same padp
Alice used in the computation. Hence, for each circuit Alice sends a trapdoor
commitment ¢ to the translation table PadDec; for the input wires associated
with padg. She also encrypts the opening of this commitment as df using the
Arbiter’s public key, and signs it for resolution purposes. For the opened circuits,
cB and dP are opened and checked. In the final stage, in order to reveal padg,
Alice opens c? for the evaluated circuits. But, we are not done yet. Bob learns one
or more pad values used in the evaluation circuits, and needs to determine which
is the correct one for decrypting his output. To facilitate this, we apply a separate
UH to padp (i.e. M, - (padglrp) for a random matrix M,) in the computation
circuits, which Bob uses in the final stage to determine the “correct” pad among
those retrieved. Without this, we could not have guaranteed correctness.

Simulate with Fairness. For simulation purposes, similar to the fair covert
2PC, the fact that the simulator can open ¢ to an arbitrary pad in the final
stage allows the simulation to go through by postponing the query to the ideal
trusted party for obtaining the output, until we are sure both parties can learn
the output. Remember that such a simulation is a necessity for simulating fair
secure computation protocols properly [31].

Commit to Alice’s Output Early. Similar to the fair covert 2PC, we
also need to ensure that if Alice aborts before revealing padp, Bob has enough
information to invoke an output resolution protocol with the Arbiter and show
evidence that he has been following the steps of the protocol. In the covert
protocol, we used the output-authenticity property of the garbling scheme for
this purpose, but in the current protocol, output-authenticity is lost after the



opening stage, since all circuits use the same output labels. To circumvent this
issue, we have Bob commit to the output labels for Alice’s output before the
opening stage, and have Alice sign the commitment. In case of a resolution, Bob
opens the signed commitment for the Arbiter, who checks its correctness and
consistency with a signed translation table provided by Alice, and only then
decrypts dP escrows for Bob to learn the pads and obtain his output.

Fix Cheating-Detection. Note that in regular cheating-detection, Bob
only learns x4 and hence the plaintext version of Alice’s output fa(za,zp).
But, Bob needs to commit to the output labels for Alice’s output, and because
the output translation table of Alice corresponds to a padded output, knowing
fa(xa,zp) is not sufficient for simulation. Therefore, we need to modify the CD
circuit as well. We fix this by having the CD circuit also output pad4. Bob can
now compute fa(xa,zp)Ppada, and use Alice’s output translation table GDec”
to determine which evaluated circuit returned the correct output (we know there
is at least one such circuit with all but negligible probability). He commits to
those labels as Alice’s output labels.

Proof overview. Our proofs are very similar in essence to the above ma-
licious Bob case. Simulator Alice would commit to and encrypt random values,
and later when she obtains the actual output from the ideal trusted party, she
would simulate opening them to the correct values. For malicious Alice case, sim-
ulator Bob also commits to random labels for Alice’s outputs, and later simulates
opening them to proper labels.

3 Preliminaries

Bellare et al. [13] introduce the notion of a garbling scheme Garble as a crypto-
graphic primitive. Besides the standard privacy guarantees, we heavily take ad-
vantage of the output-authenticity of a garbling scheme, which intuitively guar-
antees that the evaluator cannot forge valid output labels except by honestly
evaluating the garbled circuit.

In a standard oblivious transfer (OT) protocol [56], the receiver has a selec-
tion bit o, and the sender has two messages ag, a;. At the end of the protocol,
the receiver learns a, while the sender does not learn anything. In a commit-
ting oblivious transfer [34,59], at the end of the interaction, the receiver also
receives a commitment to the sender’s input messages, and the sender obtains
the opening to those commitments. As a result, the receiver can ask the sender
to open his messages at a later stage. Efficient constructions for committing OT
were proposed in [59] and [52].

The optimistic fair exchange literature includes many implementation
details we skip here for the sake of clarity (see e.g. [5,42,41]). If Alice already
registered her signature verification key with the Arbiter, our protocol can be
employed as is. But, if we want anonymity, then the Arbiter must have a way
of obtaining this verification key. The standard mechanism is to put it into the
label of a labeled encryption scheme. In our case, Alice can generate a new key
pair for each computation (or even circuit) and put the verification key into the
label of d? encryptions, and Bob can verify the signatures using this verification
key. The Arbiter can then also use this key for verification. Details such as these



and how to handle timeouts without tight synchronization are well-discussed in
the previous work [5,43,39,38], and hence we do not repeat for the sake of space.

4 Protocols

Due to the page limitations, we defer the security definitions of ideal and real
worlds for fair secure two party computation, as well as full security proofs via
simulation to the full version [63]. Both protocols remain secure in the unfair
sense even if the Arbiter actively cheats and colludes with one of the parties.
In Figures 1 and 2 we provide a full description of our fair covert 2PC,
and Figure 7 and 8 show the resolutions with the Arbiter for Bob and Alice,
respectively. Figures 3, 4, 5, and 6 describe the full protocol fairly secure against
malicious parties, and Figures 9 and 10 show the resolutions with the Arbiter
for Bob and Alice, respectively. The vertical lines in the figures represent parts
that would not have existed in the unfair counterpart. Tables 2 and 3 summarize
the overhead of adding fairness in covert and malicious protocols, respectively.

Extra Rounds|Extra Messages’ Size|Operation Type

1 O(sm) Public Key
Table 2. Overhead for fairness (Covert). Round is a single message. s is the statistical
security parameter, m is Bob’s output length.

Extra Rounds|Extra Input Length|Extra Messages’ Size|Operation Type

3 O(m+1) O(s(m +1)) Public Key
Table 3. Overhead for fairness (Malicious). Round is a single message. s is the sta-
tistical security parameter, m is the output length, ¢ is a security parameter for input
consistency.
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Alice’s input: z4 € {0,1}*. Bob’s input: 25 € {0,1}".

Common input: Alice and Bob agree on the description of a circuit C, where
C(za,zB) = f(za,zB) = (fa(za,zB), fB(TA,2RB)), and a second-preimage resis-
tant hash function H : {0,1}* — {0, 1}*.

s is a statistical security parameter that is inversely proportional to the bound on
the cheating probability. L is a computational security parameter, so, for example,
each key label is L-bits long. Let TCommit(-) be a trapdoor commitment scheme.
Setup: Let (PKr,SKr) be the Arbiter’s key pair for a public key encryption, and
(SKa,V Ka) be the signing-verification key-pair for a digital signature scheme for
Alice. At the beginning of the protocol, both parties obtain the Arbiter’s public
key from the Arbiter. Alice sends her verification key to Bob and the Arbiter.
Output: Alice learns an m-bit string fa(za,zp) and Bob learns an m-bit string
fB(za,28).

Alice Prepares the Garbled Circuits.

1. For 1 < <'s, Alice computes GC; < Garble(C).

2. Let in;"’ denote the key for bit b for Alice’s ' input wire in the i*" garbled
circuit for b € {0,1}, 1 <i<s,and 1 < j < 4. ian’i’j is defined similarly for
Bob’s input labels.

3. Let out;""7 denote the key for bit b for Alice’s j output wire in the "
garbled circuit. outf’i’j is used for Bob’s output labels.

4. Alice lets GDec? = {outOB’i‘j,outf”‘i’j}7,7:1 be the decoding table for Bob’s

output. =

5. |Alice computes GDec* = {H(outfi’i’j),H(outféé’i)};il for random bits b;_;
as the output validity-checking table for her output. [This table is randomly
permuted based on the bits b; ; such that in case of output resolution, the
Arbiter can check validity of output labels without learning their actual value.]
6. |She computes ¢ = TCommit(GDec?) as the commitment to Bob’s output
decoding table. Let GDecOpen? be the opening of this commitment. She en-
crypts this opening as d? = Epx,(GDecOpen?) using the Arbiter’s public
key. [GDeciA and d? will be used by the Arbiter to verify Bob’s honesty, and
give back Bob’s output decoding table, respectively. ¢? will be employed by
Bob to ensure that Alice behaves honestly at the last step. Note that GDec?
is computed using a second-preimage resistant hash function, whereas ¢? is
computed via trapdoor commitments.]

7. | Alice signs those as 0; = Sign(SKa, (sid, GDec?, d?)). [This signature will tie
the two decryption tables to the same circuit, and be checked by the Arbiter.
sid is the unique session identifier.]

Oblivious Transfer for Bob’s Input.
1. Alice and Bob engage in £ committed OTs, where in the j** OT, Bob’s input is

o . s . B . Bls,j
zp,; and Alice input is a pair where the first component is [ing "7, ..., ing ]

s Bl . B,s,j . Blij
and the second component is [iny "7 ..., inT"*7]. As a result, Bob learns inZ>"J

TB,j

for1<i<s,1<j</4.

Alice Sends the Circuits.
1. Alice sends {GCZ', GDec?, P, d?};l to Bob.

Fig. 1. Optimistic Fair Covert 2PC




OT-based Challenge Generation.

1. Bob picks a random challenge index e, lets b = 0, and b; = 1 for all 7 # e.

2. Alice and Bob run s OTs where Bob’s input (as the receiver) in the i** OT

is b; while Alice (as the sender) inputs a pair where the first component is

her garbled inputs {in‘;‘(’;’é 521 along with o;, and the second component is
the openings for GC;, GDec?, ¢?,d? and the input and randomness she used
in the *" committed OT above. In other words, for i # e Bob learns openings
for everything about the circuits, and for i = e he learns Alice’s input labels
and her signature.

Bob Verifies Check Circuits.

1. For i # e, Bob uses the openings he obtained in the challenge generation phase
to check the correctness of GC;. He verifies the consistency of ¢Z with d? both
of which he has openings for. He checks that GDec? is consistent with GC;.

2. ‘For i = e, he verifies the signature oe.

Bob Evaluates.
1. Note that Bob has Alice’s input labels for the e*® circuit via the OT-based
challenge generation and his own input labels via the committed OT. He eval-
uates GCe..

Output Exchange.

1. Bob tells Alice that he is done with the evaluation.

2. |Alice responds by sending o: = Sign(SKa, (sid,deadline)). Bob checks the
timeout and the session identifier are consistent with the agreed upon values,
and aborts otherwise.

3. Denote the labels for Alice’s output by {out };n:1 Bob sends these to
Alice, along with o. so that Alice will learn the evaluated circuit identifier e,
and then she translates them to her actual output on her own. If Alice does
not receive the correct labels in time, she contacts the Arbiter for resolution.

4. |Alice opens ¢Z to the decoding table GDecZ, which Bob uses to decode his
actual output. If Bob does not receive the correct decoding table in time, he
contacts the Arbiter for resolution.

A,e,j
out 4 ;

Fig. 2. Optimistic Fair Covert 2PC (cnt’d)

Alice’s input: z4 € {0,1}*. Bob’s input: 25 € {0,1}".

Common input: Alice and Bob agree on the description of a circuit C, where
C(za,zB) = f(za,zB) = (fa(za,zB), fB(TA,2RB)), and a second-preimage resis-
tant hash function H : {0,1}* — {0, 1}*.

s is a statistical security parameter that represents the bound on the cheating
probability. L is a computational security parameter, so, for example, each key
label is L-bits long. s’ is a statistical security parameter associated with the input-
consistency matrix. Let ¢t = 25’ +log s, and ¢/ = 2m + £ + 2t.

Let TCommit(-) be a trapdoor commitment scheme, and Commit(-) be a regular
commitment scheme.

Fig. 3. Optimistic Fair Malicious 2PC Inputs




Setup: Let (PKr, SKr) be the Arbiter’s key pair for a public key encryption, and
(SKa,V Ka) be the signing-verification key-pair for a digital signature scheme for
Alice. At the beginning of the protocol, both parties obtain the commitment pa-
rameters, and the Arbiter’s public key from the Arbiter. Alice sends her verification
key to Bob and the Arbiter.

Output: Alice learns an m-bit string outa = fa(ra,zp) and Bob learns an m-bit
string outp = fe(xa,zB).

Alice Prepares Input/Output Labels.

1.

Alice chooses s PRF seeds sdi,...,sd?, and commits to them using
Commit(sd‘f)7 .. .,Commit(sdf). All the randomness Alice will use for gen-
erating the i*" garbled computation circuit and its input labels will be derived
from sd#*. Similarly, she chooses 3s PRF seeds sdi?, ..., sds?, and commits to
them, where the randomness she uses for generating the i*" garbled cheating-
detection (CD) circuit and its input labels will be derived from sd;*.
Alice chooses 7,7, €r {0,1}!,pada,padp €r {0,1}™ and sets z§ =
padg||rp||zallpadal|re. She will be using x4 as her input to the computation
circuits instead of 4. We denote the 5 bit of G by mg’j.
Alice chooses in?’i’j €r{0,1}F forb e {0,1},1<i<sand1<j <. inf’i’j
would be the b-key for Alice’s j** input wire in the ‘" computation garbled
circuit.
Alice sends Commit(H(infg’lH e ||in:g’e,)) for 1 < ¢ < s, i.e. commitments to
1 '
encoding of her inputs. This is intendgcf to commit Alice to her inputs before
the matrices associated with input-consistency are chosen.
Alice lets her input to the CD circuit be 2497 = zal||padal/rz. She chooses
random labels for the associated input wires in the CD circuits and commits
to the encoding of her inputs as she did for the computation circuits.
Alice chooses W7 €g {0,1}F for j € {1,...,m} and b € {0,1}. Similarly,
she chooses WbB = {0, l}L . These correspond to labels for output wires corre-
sponding to Alice’s and Bob’s output (padded with Alice’s pads), respectively,
and unlike the covert protocol, will be the same across all s circuits.
Alice lets GDec? = {H(Wf’j), H(WlB’j)};.n:1 be the decoding table for Bob’s
output. She also lets GDec” = {H(W()A‘j), H(W{“j)};;l. The translation table
for other outputs of the circuit (i.e. outputs of the UH functions) will be created
in the standard way and with different labels for each circuit.
Alice lets PadDec; = {iné"i’j7 inf’i’j};’;t for the 3" circuit (note that the first
m+t input wires are associated with Alice’s padp and rp,). This is essentially a
decoding table for input wires for Alice’s padp and r,. Alice then commits to
this table ¢? = TCommit(PadDec;) using the trapdoor commitment scheme,
and encrypts its opening as d° = Epr, (PadDecOpen;) using the Arbiter’s
public key.

Fig. 4. Optimistic Fair Malicious 2PC




Alice Prepares the Garbled Circuits.

1. |Alice and Bob jointly choose random binary matrices M, €r
{0,135 ¥4+ A e {0,137 Let C'(2G,25) = (fa(wa,zp) @
pada, (fe(za,zB) ® pads, My - (zal|lpadalre), My - (padsl||rp))). In other
words, the circuit pads Alice and Bob’s output with separate pads generated
by Alice, and also outputs the result of applying the M, and M, to z4 and
padp for input-consistency checks.

2. For 1 < i < s, Alice computes GC; + Garble(C’) with the consideration that
she uses the input and output labels she generated above for the garbling.
3. |Denote by C'D the cheating detection circuit. Alice’s input to this circuit is
9P = za|lpada||rz. Bob’s input is an L-bit string pe, his (potential) proof
of Alice’s cheating. C'D’s computation is as outlined in Lindell [45] with the
exception that in case of detected cheating x4 and pada are both revealed to
Bob. In particular, C'D has the labels {Wf’j, WlB’j};n:1 and {Wéq’j, WlA’j };n:l
embedded in it and checks whether pc is the XOR of the 0-key and the 1-key
for any of the wires. If so, it outputs to Bob zal||pada . Otherwise, it outputs
a random string. C'D also outputs M - (zal||padal|rs) to Bob. Alice has no
output.
4. For 1 <14 < 3s, Alice computes GCD; < Garble(C'D) with the consideration
that she uses the input labels she generated above for garbling. The translation
tables for GCD; are generated in the standard way.

Oblivious Transfer for Bob’s Input to Computation Circuits. Alice and
Bob engage in ¢ committed OTs, where in the j** OT, Bob’s input is rp,; and

Alice’s input is a pair where the first component is [ing;’l’j7 R inf’s’j] and the
second component is [in?"7 . in?®7]. As a result, Bob learns infg’jj for1<i<
5,1<j <L

Alice Sends the Garbled Circuits. Alice sends {GCi,cF,dZB 5_, and GDec”,
GDec?, and 0,4 = Sign(SKa, (sid, GDec”)) to Bob (where sid is the unique
session identifier). She also sends {GCDi}f’il and the associated output translation
tables.

Challenge Generation. Alice and Bob jointly run a simulatable coin-toss to
generate a uniformly random s-bit string b and a uniformly random 3s-bit string
b’. Define the evaluation set E where i € E if and only if b; = 0, and the evaluation
set E' similarly with respect to b’. Both parties learn E and E’. Circuits are not
opened immediately, though.

Bob Evaluates Computation Circuits in E.

1. Alice sends her garbled input labels for G for all GC;,i € E, by open-
ing the commitments she made to them earlier. Alice also sends ¢ paa =
Sign(SKa, (sid,d?)) for i € E. Bob uses these input labels and those of his
own from the committed OTs to evaluate all GC; where 7 € E.

2. If there is at least one circuit with a valid output, and all circuits

with a valid output return the same output labels W(;AA}I,.,,,W(;“ATR and
Wasl,...,Was™, Bob lets Ca = TCommit(W,Y',...,W;5™ ). Note that

through these, Bob can learn 04 = outa @ pads and op = outp @ padp, but
since he does not know the pads, these are useless. Bob lets pc be a random
L-bit string.

3. If there are at least two circuits with valid but different outputs, Bob chooses
the first output wire with different labels and denotes the two labels by W
and W'. pc = W @& W' will constitute Bob’s input to the cheating detection
circuits.

4. If all circuits are evaluated to invalid output labels (i.e. the obtained labels
are not consistent with GDec” and GDec?) or if the output of the UHs in any
two circuits are different Bob does not abort (until after the opening stage)
but instead commits to a random string of appropriate length in C4.

Fig. 5. Optimistic Fair Malicious 2PC (cnt’d)




Evaluating Cheating-Detection Circuits in E’.

1. Alice and Bob engage in L committed OTs, where in the 5" OT, Bob’s input is
pc; and Alice’s input is a pair where the first component is the 3s input labels
corresponding to 0 and the second component is the 3s labels corresponding
to 1.

2. Alice sends her garbled input labels for £G” for GCD; where i € E’, by opening
the commitments she made to them earlier.

3. Bob uses the input labels to evaluate all GCD; with ¢ € E’, and uses the
translation tables to translate to plaintext outputs. If any two UH outputs are
different or if they are different from those output in the computation circuits
Bob postpones aborting until the opening stage, commits to a random string
of appropriate length for Ca.

4. |Else, he considers the majority output as the correct output. If Bob had a valid

proof of cheating pc, he learns x 4 ||pada. He computes o4 = fa(za,zp)Bpada
on his own. He then chooses a {W;}A]J ;.n:l from the evaluation circuits that is

consistent with GDec? and o4, and lets C4 = TCommit(VV(ﬁl’,l17 .. .,W:}q”’:;)

(with high probability there is at least one). [Note that in case Alice’s opening
of the check circuits are problematic, Bob will never decommit anyways.]
Bob Commits to Alice’s Garbled Output.

1. |Bob sends C'4 as his commitment to Alice’s output labels.

2. |Alice sends back 0,, = Sign(SKa, (sid, deadline,C4)). Bob can use this in

case of resolution to prove to the Arbiter that he computed Alice’s output
honestly.

Alice Opens Everything for Check Circuits.

1. For i ¢ E, Alice opens sd?* to open all secrets of GC;. She also opens c¢Z, dZ,
and the randomness used in committed OT's for Bob’s input. Bob checks cor-
rectness of opened circuits and their consistency with GDec”, GDec®. He also
verifies correctness ¢?,d? and the opened PadDec;. He aborts if any of the
checks fail.

2. Fori ¢ E', Alice opens sdi? to open all secrets of GCD;. He also reveals the ran-
domness used in committed OTs for Bob’s input. Bob checks the correctness
of the opened circuits and the OTs, and aborts in case of a fail.

Output Exchange.

1. Bob opens C4 to Alice’s output labels. Alice translates these to her actual
output outs using pada and the translation table, on her own. In case of a
problem, Alice resolves with the Arbiter.

2. |Alice opens ¢P for i € E. This allows Bob to learn the values Alice used
for padp,rp in all evaluated circuits. For each such value he computes M, -
(padg||rp) and checks if the result is equal to the unique UH output he obtained
when evaluating the circuits. He chooses a pad meeting this requirement and

uses it to decode his final output outp. In case of a problem, Bob resolves with
the Arbiter.

Fig. 6. Optimistic Fair Malicious 2PC (cnt’d)




. Bob sends GDec?,d?, 5.,0: to the Arbiter. He also sends labels for Alice’s

A,e,j m
out 4 ; }j:I'

The Arbiter verifies the signatures, checks that the time is earlier than the
deadline in o; and the session identifiers are matching. He also makes sure

outfd‘zij values are consistent with GDec?. Essentially, one output label per

pair must be provided. He aborts if any of the checks fail.
In case of no fails, the Arbiter decrypts dZ and sends GDecOpenf to Bob. He

A,e,j m .
stores {OUtoutA’j i1 for Alice.

output i.e. {out

Bob checks that GDecOpen? is the correct opening for ¢Z,* and uses GDec? in
the opening to translate his output labels to actual outputs.

“This check is necessary against potentially malicious Arbiter to preserve cor-

rectness.

Fig. 7. Resolution for Bob (for Optimistic Fair Covert 2PC)

1.

2.

. Alice translates {out

If Alice contacts the Arbiter before the timeout and Bob has not contacted the
Arbiter yet, the Arbiter tells Alice to come after the timeout.

If Alice contacts the Arbiter after the timeout and Bob has not contacted the
Arbiter yet, the protocol is aborted and no party obtains the actual output.

. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends

A,e,j ™M
{outoutAﬁj o
is the same Alice, e.g. by asking for the input to a one way function whose

output was in the associated signature given by Bob, see e.g. [5]).
Ae.d m:1 to actual outputs on her own.

obtained via Bob’s resolution to Alice (after making sure she

outa,jtj

Fig. 8. Resolution for Alice (for Optimistic Fair Covert 2PC)

. Bob sends GDec”, o¢peca, Ca, 00, to the Arbiter. He also sends d?, o paa for

all i € E to the Arbiter. He also opens Ca to W27 . WAJ

0A 1 OA,m"

. The Arbiter verifies the signature, checks that the time is earlier than the dead-

line in the signature and the session identifiers match. He also makes sure the

opened values W(jé‘"J'1 Yy Wj:’jm are consistent with C'4 and GDec”. Essentially,

one output label per pair must be provided. He aborts if any of the checks fail.

. In case of no fails, the Arbiter decrypts d” for i € E and sends PadDecOpen;
to Bob. He stores WOAA’}I ey WDAA’TZL for Alice.

. Bob checks that PadDecOpen? is the correct opening for ¢, for i € E, and then

uses PadDec; values to obtain his actual output outp as in the last step of the
main protocol.

Fig. 9. Resolution for Bob (for Optimistic Fair Malicious 2PC)

. If Alice contacts the Arbiter before the timeout and Bob has not contacted the

Arbiter yet, the Arbiter tells Alice to come after the timeout.

. If Alice contacts the Arbiter after the timeout and Bob has not contacted the

Arbiter yet, the protocol is aborted and no party obtains the actual output.

. Else (Bob already contacted the Arbiter and resolved), the Arbiter sends

WOAAII, R W(f}q”fn obtained via Bob’s resolution to Alice.
. Alice translates W(,AA’_l1 ey WOAA’T:L to her actual outputs on her own.

Fig. 10. Resolution for Alice (for Optimistic Fair Malicious 2PC)
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