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Abstract. Over the last decade, mobile devices and mobile applica-
tions have become pervasive in their usage. Although many privacy risks
associated with mobile applications have been investigated, prior work
mainly focuses on the collection of user information by application de-
velopers and advertisers. Inspired by the Snowden revelations, we study
the ways mobile applications enable mass surveillance by sending unique
identifiers over unencrypted connections. Applying passive network fin-
gerprinting, we show how a passive network adversary can improve his
ability to target mobile users’ traffic.
Our results are based on a large-scale automated study of mobile applica-
tion network traffic. The framework we developed for this study down-
loads and runs mobile applications, captures their network traffic and
automatically detects identifiers that are sent in the clear. Our findings
show that a global adversary can link 57% of a user’s unencrypted mobile
traffic. Evaluating two countermeasures available to privacy aware mo-
bile users, we find their effectiveness to be very limited against identifier
leakage.

1 Introduction

Documents that have been revealed by the former NSA contractor Edward
Snowden shed light on the massive surveillance capabilities of the USA and UK
intelligence agencies. One particular document released by the German newspa-
per Der Spiegel describes the ways in which traffic of mobile applications (apps)
is exploited for surveillance [16]. The document, which reads “Exploring and
Exploiting Leaky Mobile Apps With BADASS,” provides a unique opportunity
to understand the capabilities of powerful network adversaries. Furthermore, the
document reveals that identifiers sent over unencrypted channels are being used
to distinguish the traffic of individual mobile users with the help of so-called se-
lectors. Similar revelations about the use of Google cookies to target individuals
imply that BADASS is not an isolated incident [12,34].

While it is known that a substantial amount of mobile app traffic is unen-
crypted and contains sensitive information such as users’ location or real identi-
ties [24,35,43], the opportunities that mobile traffic offers to surveillance agencies
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may still be greatly underestimated. Identifiers that are being sent in the clear,
may allow the adversary to link app sessions of users and thus to learn more
information about the surveilled users than he could without. The purpose of
this study is to evaluate this risk and to quantify the extent to that it is possible
to track mobile app users based on unencrypted app traffic.

To this end we present a novel framework to quantify the threat that a
surveillance adversary poses to smartphone users. The framework automates the
collection and analysis of mobile app traffic: it downloads and installs Android
apps, runs them using Android’s The Monkey [18] tool, captures the network
traffic on cloud-based VPN servers, and finally analyzes the traffic to detect
unique and persistent identifiers. Our framework allows large-scale evaluation of
mobile apps in an automated fashion, which is demonstrated by the evaluation
of 1260 apps. We choose the apps among all possible categories of the Google
Play store and of different popularity levels.

Our study is inspired by a recent work by Englehardt et al. [26]. They studied
the surveillance implications of cookie-based tracking by combining web and
network measurements. The evaluation method they use boils down to measuring
the success of the adversary by the ratio of user traffic he can cluster together.
We take a similar approach for automated identifier detection but we extend
their work to capture non-cookie-based tracking methods that are suitable for
user tracking. Moreover, we show how TCP timestamp-based passive network
fingerprinting can be used to improve the clustering of the traffic and may allow
to detect the boot time of Android devices.

1.1 Contributions

Large-scale, automated study on surveillance implications of mobile
apps. We present an automated analysis of 1260 Android apps from 42 app
categories and show how mobile apps enable third party surveillance by sending
unique identifiers over unencrypted connections.

Applying passive network fingerprinting for mobile app traffic ex-
ploitation. We show how a passive network adversary can use TCP timestamps
to significantly improve the amount of traffic he can cluster. This allows us to
present a more realistic assessment of the threat imposed by a passive adversary.
Further, we show how an adversary can guess the boot time of an Android device
and link users’ traffic even if they switch from WiFi to 3G or vice versa.

Evaluation of the available defenses for privacy aware users. We an-
alyze the efficacy of two mobile ad-blocking tools: Adblock Plus for Android [13]
and Disconnect Malvertising [14]. Our analysis shows that these tools have a
limited effect preventing mobile apps from leaking identifiers.

2 Background and Related Work
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Table 1: Unique smartphone identifiers present on Android, an overview.

Name Persistence Permission

Android ID until a factory reset None

MAC Address lifetime of the device ACCESS WIFI STATE

IMEI lifetime of the device READ PHONE STATE

IMSI lifetime of the SIM card READ PHONE STATE

Serial number lifetime of the device None [41]

SIM serial number lifetime of the SIM card READ PHONE STATE

Phone number lifetime of the SIM card READ PHONE STATE

Google Advertising ID until reset by the user ACCESS NETWORK STATE, INTERNET

Android apps and identifiers. Android apps and third-parties can access
common identifiers present on the smartphone, such as MAC address, Google
Advertising ID or IMEI number. We call these identifiers smartphone IDs. An
overview of the Android smartphone IDs can be found in Table 1. Developers
may also choose to assign IDs to users (instead of using smartphone IDs), for
identifying individual app installations or simply to avoid asking for additional
permissions [11]. We refer to such identifiers as app assigned IDs.

Privacy implications of mobile apps. Although privacy implications of
Android apps have been extensively studied in the literature [25, 28, 29], prior
work has mainly focused on the sensitive information that is collected and trans-
mitted to remote servers. Xia et al. showed that up to 50% of the traffic can be
attributed to the real names of users [43]. Enck et al. developed TaintDroid [25],
a system-wide taint analysis system that allows runtime analysis and tracking
of sensitive information flows. While it would be possible to use TaintDroid in
our study, we opted to keep the phone modifications minimal and collect data
at external VPN servers. This allows us to have a more realistic assessment of
application behavior and adversary capabilities.

Our work differs from these studies, by quantifying the threat posed by a pas-
sive network adversary who exploits mobile app traffic for surveillance purposes.
We also show how the adversary can automatically discover user identifiers and
use passive network fingerprinting techniques to improve his attack.

Passive network monitoring and surveillance. Englehardt et al. [26]
show how third-party cookies sent over unencrypted connections can be used to
cluster the traffic of individual users for surveillance. They found that recon-
structing 62-73% of the user browsing history is possible by passively observing
network traffic.

In addition to using identifiers to track smartphones, an eavesdropping ad-
versary can use passive network fingerprinting techniques to distinguish traffic
from different physical devices. Prior work showed that clock skew [31, 33, 44],
TCP timestamps [23, 42] and IP ID fields [21] can be used to remotely identify
hosts or count hosts behind a NAT. In this study, we use TCP timestamps to
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improve the linking of users’ mobile traffic in short time intervals. We assume
the adversary to exploit TCP timestamps to distinguish traffic of users who are
behind a NAT. Moreover, we demonstrate how an adversary can discover the
boot time of an Android device by exploiting TCP timestamps.

3 Threat Model

In this paper we consider passive network adversaries whose goal is to link
app traffic of smartphone users. The adversaries observe unique identifiers that
are being transmitted from mobile apps in the clear and apply network finger-
printing techniques. We consider that the adversaries cannot break cryptography
or launch MITM attacks such as SSLstrip [32].

We distinguish between two types of passive adversaries: A global passive
adversary, who can intercept all Internet traffic at all time; and a restricted
passive adversary who can only observe a limited part of the network traffic.
Both adversaries have the capability to collect bulk data. This may be achieved
in various ways, such as tapping into undersea fiber-optic cables; hacking routers
or switches; intercepting traffic at major Internet Service Providers (ISP) or
Internet Exchange Points (IXP) 3.

There can be several models in which an adversary may have limited access to
the user’s traffic. In this study we evaluate adversaries whose limitation is either
host-based or packet-based. The host-based adversary is only able to see traffic
bound to certain hosts; for example, because the adversary is only able to obtain
warrants for intercepting traffic within its own jurisdiction. The packet-based
adversary may only have access to a certain point in the Internet backbone and
thus miss traffic that is being sent along other routes. For both adversaries, we
evaluate the success based on different levels of network coverage (Section 7.2).
We simulate partial network coverage by randomly selecting hosts or packets to
be analyzed depending on the model. For instance, for the host-based model with
0.25 network coverage, we randomly pick one-fourth of the hosts and exclude the
traffic bound to remaining hosts from the analysis.

4 Data Collection Methodology

4.1 Experimental Setup

We present the experimental setup4 that is used for this paper in Fig. 1. It in-
cludes a controller PC, two smartphones and two VPN servers for traffic capture.
The main building blocks of our framework are as follows:

3 All these methods are feasible, as illustrated by the Snowden revelations [6, 8].
4 The source code of the framework, as well as the collected data will be made available

to researchers upon request.
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Fig. 1: Our setup in this study consists of a Controller PC that manages the
experiments, two Android phones that run apps, and two VPN servers that
capture the network traffic.

Controller PC. The Controller PC runs the software that orchestrates the
experiments and the analysis. It has three main tasks: 1) installing apps on the
smartphones and ensuring that the experiment runs smoothly, e.g. checking the
phone’s WiFi and VPN connections, 2) sending SSH commands to the remote
VPN servers to start, stop and download the traffic capture, 3) analyzing the
collected data.

Smartphones. We conducted our experiments with two Samsung Galaxy
SIII Mini smartphones running Android version 4.1.2. We rooted the phones to
address issues such as storage and uninstallation problems. Although we consid-
ered using the Android emulator as in other works [24, 36, 38], our preliminary
tests [39] showed that the number of transmitted identifiers is significantly less
in the emulator compared to the same setting with a real smartphone and the
emulator lacks certain identifiers, such as the WiFi MAC address. We also chose
not to intercept system API calls or instrument the operating system, such as
in [25,27], since we preferred a simpler and more portable solution.

The Monkey. We use The Monkey [18] tool to automate the experiments
and simulate the user interaction at large scale. The Monkey generates a pseudo-
random event stream that includes touch, motion and keyboard events.

Traffic Capture. The network traffic is captured by two remote VPN
servers, using the dumpcap [5] command line tool. Using VPN servers, we could
capture all the network traffic and not only HTTP traffic, which would be the
case with an HTTP proxy. Also, since we record the traffic on remote machines,
we ensure that there is no packet drop due to lack of buffer space on resource
constrained devices [15]. However, we captured traffic locally on the phone dur-
ing the evaluation of ad-blockers for Android. These tools use a proxy or VPN



VI

themselves to block ads. Since Android does not allow simultaneous VPN con-
nections, we captured the traffic locally by running tcpdump on the smartphones.
To ensure comparability, we exclude all the captures where we observed packet
drops from the analysis (20% of the cases, 171 apps in two experiments).

Traffic parser. For parsing the captured network traffic, we developed a
Python script based on the dpkt [3] packet parsing library. The script allows
us to decode IPv4 and IPv6 datagrams, reassemble TCP streams, decompress
compressed HTTP bodies and to parse GRE and PPTP encapsulation used by
the VPN. We extract HTTP headers and bodies, packet timestamps, IP ad-
dresses and port numbers from the packets for later use. Since it is outside of
the scope of this study, we did not decrypt SSL/TLS records. However, for the
TCP timestamp analysis described in Section 6 it is beneficial, yet not neces-
sary, to extract TCP timestamps from all TCP packets, including the ones from
encrypted HTTPS traffic. Note that this is within our adversary model, because
TCP headers are sent in the clear and thus available to a passive adversary.

Having described the main building blocks of the experimental setup, now
we outline the different modes and steps of the experiments:

Experiment modes. We run experiments in two different modes to evaluate
the difference in identifier transmission; i) if the app is simply opened and ii) if
the user actually interacts with the app. We refer to the former as startscreen
experiment and to the latter as interactive experiment. The Monkey is used to
simulate user interaction in the interactive experiments.

Evaluation of ad-blocker apps. We evaluate the effect of apps that block
ads and trackers. While those apps are not specifically designed to prevent iden-
tifier leakage, they may still reduce the number of identifiers being sent in the
clear. Specifically, we repeated the experiment of the top-popularity apps after
we installed and activated the ad-blocker apps Adblock Plus for Android [13]
and Disconnect Malvertising [14].

Steps of the experiment. Our framework executes the steps of the experi-
ments in an entirely automated fashion. The Controller PC connects the smart-
phone to the VPN server by running a Python based AndroidViewClient [4]
script that emulates the touch events necessary to start the VPN connection
on the smartphone. Since installing all the apps at once is not possible due to
storage constraints, our framework conducts the experiment in cycles. In each
cycle we install 20 apps and then run them sequentially5. The apps for each
cycle are randomly chosen from the entire set of apps, with the condition that
each app is only picked once. Before running an app, the Controller PC kills the
process of the previous app. This way we are able to prevent the traffic of the
previously tested app mistakenly being recorded for the subsequent app. After
finished running the 20 apps, the Controller PC runs all 20 apps a second time
in the same order. Running each app twice enables the automated detection
of identifiers outlined in Section 5.1. Finally, the Controller PC completes the
current cycle by uninstalling all 20 apps.

5 We chose 20 since this was the maximum number of apps that can be installed on
an Android emulator at once, which we used in the preliminary stages of the study.
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4.2 Obtaining Android Applications

To obtain the Android apps, we developed scripts for crawling the Google
Play store and, subsequently, to download APK files. Our scripts are based on
the Python Selenium [17] library, the APK downloader browser extension and
webpages [1]. Using this software, we crawled the entire Play Store and obtained
information on 1, 003, 701 different Android apps. For every app we collected
information such as number of downloads, rating scores and app category. This
allows us to rank the apps of every category according to their popularity.

For every app category we choose 10 apps from three different popularity
levels: top-popularity, mid-popularity and low-popularity. While we use the most
popular apps for the top-popularity category, we sample the mid-popularity and
low-popularity apps from the 25th and 50th percentiles from each category. At
the time we conducted the crawl, there were 42 different app categories and
we therefore obtained a total of 1260 (42 × 10 × 3) apps. The average time for
evaluating one app is 64 seconds.

5 Analysis Methodology

In the following we show how an adversary is able to extract identifiers from
network traffic and then use these identifiers to cluster data streams, i.e. linking
data streams as belonging to the same user. This is the same that an adversary
with the goal of surveilling Internet traffic would do, i.e. extracting and applying
a set of selectors that match unique and persistent mobile app identifiers.

5.1 Identifier Detection

Suitable identifiers for tracking need to be persistent and unique, i.e. the
same ID cannot appear on different phones and IDs need to be observable over
multiple sessions. Our framework automatically detects such unique identifiers
in unencrypted mobile app traffic. While the overall approach is similar to the
one in [19,26] we extend the cookie-based identifier detection technique to cover
mobile app traffic. We assume that the smartphone IDs (such as Android ID
or MAC address) are not known a priori to the adversary. The adversary has
to extract IDs based on the traffic traces only. Yet, we use smartphone IDs as
the ground truth to improve our automated ID detection method by tuning its
parameters.

For finding identifiers, we process HTTP request headers, bodies and URL
parameters. Specifically, the steps of the unique identifier detection are as follows:

– Split URLs, headers, cookie contents and message bodies using common
delimiters, such as “=”, “&”, “:”, to extract key-value pairs. Decode JSON
encoded strings in HTTP message bodies.
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– Filter out cookies with expiry times shorter than three months. A tracking
cookie is expected to have a longer expiry period [26].

– For each key-value pair, we construct an identifying rule set and add it to
the potential identifier list. This is the tuple (host, position, key), where host
is extracted from the HTTP message and position indicates whether the key
was extracted from a cookie, header or URL.

– Compare values of the same key between runs of two smartphones.
• Eliminate values if they are not the same length.
• Eliminate values that are not observed in two runs of the same app on

the same smartphone.
• Eliminate values that are shorter than 10 or longer than 100 characters.
• Eliminate values that are more than 70% similar according to the Ratcliff-

Obershelp similarity measure [22].
– Add (host, position, key) to the rule set.

We tuned similarity (70%) and length limits (10, 100) according to two crite-
ria: minimizing false positives and detecting all the smartphone identifiers (Ta-
ble 1) with the extracted rule set. We experimented with different limit values
and picked the values that gave us the best results based on these criteria. A
more thorough evaluation of these limits is omitted due to space constraints, but
interested readers can refer to [19,26] for the main principles of the methodology.

5.2 Clustering of App Traffic

While the ultimate goal of the adversary is to link different app sessions of
the same user by exploiting unique identifiers transmitted in app traffic, the
first challenge of the adversary is to identify the traffic of one app. An app may
open multiple TCP connections to different servers and linking these connections
can be challenging. The user’s public IP address is not a good identifier: several
users may share the same public IP via a NAT. Moreover, IP addresses of mobile
phones are known to change frequently [20].

In this work we consider two different clustering strategies. In the TCP stream
based linking, the attacker can only link IP packets based on their TCP stream.
The adversary can simply monitor creation and tear down of TCP streams and
ensure that the packets being sent within one stream are originating from the
same phone. The second, more sophisticated strategy employs passive network
fingerprinting techniques to link IP packets of the same app session. We will
refer this technique as app session based linking and outline it in Section 6.

Following Englehardt et al. [26] we present linking of the user traffic as a
graph building process. We use the term node to refer to a list of packets that
the adversary is certain that they belong to the same user. As explained above,
this is either a TCP stream or an app session. For every node the adversary
extracts the identifying rule set (host, position, key) as described in Section 5.1.
Starting from these nodes, the adversary inspects the content of the traffic and
then tries to link nodes together to so-called components.
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Therefore, the attacker will try to match a node’s identifiers to the identifiers
of the existing components. We account for the fact that some developers do not
use the smartphone ID right away as identifier, but derive an identifier from it
by hashing or encoding. Thus the clustering algorithm will also try to match the
SHA-1, SHA-256, MD5 and murmur3 hashes and base64 encoded form of the
identifiers. For every node, there exist three possibilities when comparing the
node’s identifiers to a existing component’s identifiers:

1. The node’s value (or its derivative) matches the identifiers of an
existing component: The node will be added to the component and the
respective identifiers are being merged, i.e. the newly added node may include
identifiers not yet included in the component.

2. None of the node’s identifiers or their derivatives can be matched
to an existing component: The node creates its own component which is
disconnected from all other components.

3. The node shares identifiers with multiple components: These com-
ponents are merged together and the node is added to this component.

For the remainder of this paper, we refer to the component that contains the
highest number of nodes as the Giant Connected Component (GCC). Further-
more, we define the ratio of number of nodes in GCC to the number of nodes
in the whole graph as the GCC ratio. The GCC ratio serves as a metric for
measuring the adversary’s success for linking users’ traffic based on the amount
of traffic he observes.

5.3 Background Traffic Detection

The Android operating system itself also generates network traffic, for exam-
ple to check updates or sync user accounts. Although we find in our experiments
that the Android OS does not send any identifiers in the clear, we still take
measures to avoid that this traffic pollutes our experiment data. Particularly,
we captured the network traffic of two smartphones for several hours multiple
times without running any app. A complete overview of all HTTP queries made
during such captures can be found in [40]. We excluded all the HTTP requests
to these domains during the analysis stage. Although we excluded background
traffic from our analysis, the adversary may try to exploit the background traffic
in a real-world attack.

6 Linking Mobile App Traffic with TCP Timestamps

In this section we elaborate on the adversary’s ability to employ passive
fingerprinting techniques to link different IP packets originating from the same
smartphone. As mentioned in Section 5.2, this gives a significant advantage to
the adversary when clustering the user traffic. In particular, the adversary is
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able to analyze TCP timestamps for this task as they are commonly allowed by
the firewalls [33].

TCP timestamps are an optional field in TCP packets that include a 32-
bit monotonically increasing counter. They are used to improve the protocol
performance and protect against old segments that may corrupt TCP connec-
tions [30]. While the exact usage of TCP timestamps is platform dependent, our
inspection of the Android source code and capture files from our experiments
revealed that Android initializes the TCP timestamp to a fixed value after boot
and uses 100Hz as the timestamp increment frequency [2]. Thus, at any time
t, TCP timestamp of a previously observed device can be estimated as follows:
TSt = TSprev+100×(t−tprev), where TSprev is the timestamp observed at tprev
and (t−tprev) is the elapsed time. The adversary can therefore link different visits
from the same device by comparing the observed TCP timestamps to his esti-
mate. Prior studies have shown that distinguishing devices behind a NAT using
TCP timestamps can be done in an efficient and scalable manner [23,37,42].

Fig. 2: TCP timestamp vs. capture time plot of Angry Birds Space app follows
a line with a slope of 100, which is the timestamp resolution used by Android.
Different TCP sessions, indicated by different colors, can be linked together by
exploiting the linearity of the TCP timestamp values.

Fig. 2 demonstrates the linear increase of the TCP timestamps of a phone
running the “Angry Bird Space” app. To demonstrate the linkability of TCP
streams, every point in Fig. 2 is colored based on its TCP source and destination
port. The straight line shows that the adversary can easily link different TCP
streams of the same device by exploiting the linearity of the timestamps. The
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adversary is also able to consider TCP timestamps of encrypted communications,
because TCP timestamps are sent unencrypted in the packet headers. This allows
adversaries within our threat model to further increase the success of the linking.
Furthermore, TCP timestamps can be used to link traffic even if the user switches
from WiFi to mobile data connection or vice versa [40]. Finally, the linking is still
feasible even if the adversary misses some packets, for instance, due to partial
coverage of the network.

Limitations. During the background traffic detection experiments, we ob-
served cases in which TCP timestamps are not incremented linearly. Consulting
the Android System Clock Documentation, we determined that the CPU and
certain system timers stop when the device enters the deep sleep state [10]. This
power saving mechanism is triggered only when the screen is off and the device
is not connected to the power outlet or USB port. Therefore, the phone will
never go into deep sleep when a user is interacting with an app and the TCP
timestamps will be incremented in a predictable way, allowing the linking of the
traffic by app sessions.

Implications for traffic linking. We will assume the adversary can use
TCP timestamps to cluster packets generated during the use of an app (app
session), as the phone never enters deep sleep mode when it is in active use. As
mentioned in Section 5.2, we will refer to this as app session based linking.

Android boot time detection. In addition to linking packets from differ-
ent TCP streams, TCP timestamps can also be used to guess the boot time of
remote devices [7]. Among other things, boot time can be used to determine if
the device is patched with critical updates that require a reboot. Since it is not
directly related to traffic linking attack considered in the study, we explain the
boot time detection methodology in the unabridged version of this paper [40].

7 Results

7.1 Identifier Detection Rules

We present in Table 2 an overview of the identifying rule set that we detected
by the methodology explained in Section 5.1. Recall that identifying rules cor-
respond to “selectors” in the surveillance jargon, which allow an adversary to
target a user’s network traffic. In total we found 1597 rules with our method, of
which 1127 (71%) correspond to a smartphone ID or its derivative. Our results
show that the Android ID and Google Advertising ID are the most frequently
transmitted smartphone IDs, accounting for 72% (812/1127) of the total. We
group the least commonly transmitted smartphone IDs under the Other Smart-
phone IDs column, which include the following: device serial number, IMSI, SIM
serial number and registered Google account email. Furthermore, we found 29%
of the extracted rules to be app-assigned IDs.
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Table 2: The extracted ID detection rules and corresponding smartphone IDs.
SID : Smartphone ID, AAID : App Assigned ID.

Exp.
Mode

App
popu-
larity

Android
ID

Google
Ad ID

IMEI MAC Other
SIDs

AAIDs Total
ID
Rules

Interactive top 165 111 63 29 16 193 577

Startscreen top 115 56 45 19 11 91 337

Interactive mid 56 28 20 6 5 60 175

Startscreen mid 48 28 16 5 4 40 141

Interactive low 73 61 22 15 8 53 232

Startscreen low 47 24 16 7 8 33 135

Total 504 308 182 81 52 470 1597

Analyzing the extracted rules for the top-popularity, interactive experiments,
we found that 50% of the identifiers are sent in the URI of the HTTP requests
(291 rules). In 39% (225) of the rules, the IDs are sent in the HTTP request
body, using the POST method. Only 3% (18) of the cases, the identifier was
sent in a cookie. The average identifier length in our rule set is 26.4 characters.
A sample of identifying rules is given in Table 3.

Table 3: Examples rules found in the constructed identifying rule set. The values
are modified to prevent the disclosure of real identifiers of the phones used in
the study.

Host Position Key ID Value

data.flurry.com Body offset60 Android ID AND9f20d23388...

apps.ad-x.co.uk URI custom data / meta udid Unknown 19E5B4CEE6F5...

apps.ad-x.co.uk URI macAddress WiFi MAC D0:C4:F7:58:6C:12

alog.umeng.com Body header / device id IMEI 354917158514924

d.applovin.com Body device info / idfa Google Ad ID 0e5f5a7d-a3e4-..

After extracting identifier detection rules, we apply them to the traffic cap-
tured during the experiments. Due to space constraints we present the detailed
results on the transmitted IDs in the unabridged version of this paper [40].

Moreover, analyzing the traffic captures of the top-popularity apps, we found
that certain apps send precise location information (29 apps), email address (7
apps) and phone number (2 apps) in the clear. Together with the linking attack
presented in this paper, this allows an adversary to link significantly more traffic
to real-life identities.
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Table 4: The most common third-party hosts found to collect at least an identifier
over unencrypted connections. The listed hosts are contacted by the highest
number of apps (based on 420 top-popularity apps, interactive experiment).

Host # Apps Collected IDs

data.flurry.com 43 Android ID

ads.mopub.com 32 Google advertising ID

apps.ad-x.co.uk 22 Google advertising ID, IMEI, Serial number, Android ID

alog.umeng.com 16 IMEI

a.applovin.com 16 Google advertising ID

We found that 1076 different hosts were contacted over unencrypted connec-
tions during the experiments for the top-popularity apps in the interactive mode.
The data.flurry.com domain is the most popular third-party domain collecting
Android ID from 43 different apps (Table 4). Note that data.flurry.com received
a notable mention in the slides of the BADASS program [16] for its identifier
leakage.

7.2 Traffic Clustering

Here we evaluate the adversary’s success in terms of unencrypted app traffic
ratio (GCC ratio) that he can link together in different settings. We follow the
analysis methodology explained in Section 5.2 and present clustering results for
100 randomly selected combinations of 27 apps. We pick 27 apps since it is the
average number of apps used per month according to a recent survey [9]. Running
100 iterations with a different combination of (27) apps allowed us to reduce the
variance between different runs and account for all the studied apps. We only
consider apps that send at least one HTTP request and calculate the GCC ratio
based on the unencrypted traffic. For the top-popular apps in interactive mode,
these account for 69% of the apps. For simplicity, we will present the clustering
results for only one phone and a single run of each app. The results from two
phones did not have any significant difference.

Effect of using TCP timestamps for traffic linking. The left boxplot
in Fig. 3(a), shows that when the adversary does not take TCP timestamps into
account (TCP stream based linking), he can cluster 25% of users’ unencrypted
traffic. However, by exploiting TCP timestamps he can increase the GCC ratio
to 57%.

Effect of app popularity Fig. 3(b) shows that popularity has a significant
impact on the linking success of the adversary. The most popular apps allow
the adversary to cluster 57% of the unencrypted traffic, while the apps from
the mid-popular and low-popular level result in a GCC ratio of 32% and 28%,
respectively.

Due to space constraints, we will only present results for the apps from the
top-popularity level in the rest of this section.
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(a) GCC ratio for the top-popularity
apps, shown for TCP stream and app ses-
sion based linking.

(b) GCC ratio for apps of different popu-
larity levels for interaction mode.

(c) GCC ratio for top-popularity apps,
shown for interaction and startscreen
mode.

(d) GCC ratio for the top-popularity
apps, shown while using different privacy
enhancing tools.

(e) GCC ratio for the top-popularity
apps, shown for different network cover-
age levels of a host based restricted ad-
versary.

(f) GCC ratio for the top-popularity apps,
shown for different network coverage lev-
els of a packet based restricted adversary.

Fig. 3: The success of the adversary under different experimental settings and
adversary models. The GCC ratio is the proportion of the unencrypted app traffic
that the adversary can link together. The results are shown for 100 different
randomly selected combinations of 27 apps.
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Effect of user interaction. Fig. 3(c) shows the GCC ratio for two different
experiment modes, interaction and startscreen. Although, the number of identi-
fiers sent in two modes are significantly different (577 vs. 337), the graph shows
a similar GCC ratio around 53% for two modes. A possible explanation is that
the identifiers that enable linking are already sent as soon as the app is started.

Effect of countermeasures. Fig. 3(d) shows that both ad-blocking apps
provide a limited protection against linking of the app traffic. Using Adblock Plus
leads to an average linking of 50%. Disconnect Malvertising performs better, with
a GCC rate of 38%, reduced from 57%.

Restricted adversary. Fig. 3(e) shows that an adversary that can only
intercept traffic to 50% of the hosts can link up to 38% of the unencrypted mobile
app sessions. For the packet based restricted adversary model, we observe that
an adversary with a limited coverage of 25% of the user’s packets can still link
37% of all app sessions together (Fig. 3(f)). In both models restricted adversary’s
success grows almost linear with his network coverage. Note that packet based
restricted adversary can link significantly more traffic than the host-based model
for the same network coverage ratio. This may be due to being able to observe
packets from more hosts which will allow to link apps across sessions.

8 Limitations

Some apps may not be fully discovered by The Monkey, leading to an incom-
plete view of the network traffic. Also, apps that require user logins may not
be sufficiently analyzed by our automated methodology. For those reasons, our
results should be taken as lower bounds.

While we assume that the smartphones can be distinguished by their TCP
timestamps, some middleboxes may interfere with user traffic. Firewalls, proxies
or cache servers may terminate outgoing HTTP or TCP connections and open a
new connection to the outside servers. Furthermore, end-user NAT devices may
have various configurations and hence behave differently compared to enterprise
NATs. In such cases, the adversary’s ability to link traffic by TCP timestamps
may be reduced.

We used rooted Android phones in our experiments. Although rooting the
phones may introduce changes in the observed traffic, we assumed the changes
to be minimal.

9 Conclusion

The revealed slides of the BADASS program have shown that unencrypted
mobile app traffic is exploited for mass surveillance. Identifiers sent in the clear
by the mobile applications allow targeting mobile users, linking of their traffic
and building a database of their online activities.



XVI

In this study, we evaluated the surveillance threat posed by a passive network
adversary who exploits mobile app traffic for surveillance purposes. We presented
a novel framework that automates the analysis of mobile app network traffic. Our
framework and methodology is designed to be flexible and can be used in other
mobile privacy studies with slight modifications.

Our results show that using TCP timestamps and unique identifiers sent
in the unencrypted HTTP traffic, a global adversary can cluster 57% of users’
unencrypted mobile app sessions. We demonstrated that a passive adversary can
automatically build a rule set that extracts unique identifiers in the observed
traffic, which serves as a “selector” list for targeting users.

Our results suggest that popular apps leak significantly more identifiers than
the less popular apps. Furthermore, while interacting with the app increases the
number of leaked identifiers, solely starting an app amounts to the same attack
effectiveness.

We evaluated two countermeasures designed to block mobile ads and found
that they provide a limited protection against linking of the user traffic. Encrypt-
ing mobile app traffic can effectively protect against passive network adversaries.
Moreover, a countermeasure similar to HTTPS Everywhere browser extension
can be developed to replace insecure HTTP connections of mobile apps with
secure HTTPS connections on the fly.
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